SERIES 681XXB
 SYNTHESIZED SWEEP GENERATOR OPERATION MANUAL

WARRANTY

The ANRITSU product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment.

ANRITSU 's obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to ANRITSU for warranty repairs. Obligation is limited to the original purchaser. ANRITSU is not liable for consequential damages.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to ANRITSU connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer's sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS

Adobe Acrobat is a registered trademark of Adobe Systems Incorporated.

NOTICE

ANRITSU Company has prepared this manual for use by ANRITSU Company personnel and customers as a guide for the proper installation, operation and maintenance of ANRITSU Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of ANRITSU Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of ANRITSU Company.

DECLARATION OF CONFORMITY

Manufacturer's Name: ANRITSU COMPANY
Manufacturer's Address: Microwave Measurements Division
490 Jarvis Drive
Morgan Hill, CA 95037-2809
USA
declares that the product specified below:
Product Name: Synthesized CW / Sweep / Signal Generator
Model Number: $\quad 680 \times X B, 681 \mathrm{XXB}, 682 \mathrm{XXB}, 683 \mathrm{XXB}$
conforms to the requirement of:
EMC Directive 89/336/EEC as amended by Council Directive 92/31/EEC \& 93/68/EEC Low Voltage Directive 73/23/EEC as amended by Council directive 93/68/EEC

Electromagnetic Interference:

Emissions:
CISPR 11:1990/EN55011:1991 Group 1 Class A
Immunity: \quad IEC 1000-4-2:1995/prEN50082-1:1995-4kV CD, 8 kV AD
IEC 1000-4-3:1993/ENV50140:1994-3V/m
IEC 1000-4-4:1995/prEN50082-1:1995-0.5kV SL, 1kV PL
IEC 1000-4-5:1995/prEN50082-1:1995-0.5kV - 1 kV LN
$0.5 \mathrm{kV}-1 \mathrm{kV} \mathrm{NG}$
$0.5 \mathrm{kV}-1 \mathrm{kV}$ GL

Electrical Safety Requirement:

Product Safety:
IEC 1010-1:1990 + A1/EN61010-1:1993

Morgan Hill, CA

European Contact: For Anritsu product EMC \& LVD information, contact Anritsu LTD, Rutherford Close, Stevenage Herts, SGI 2EF UK, (FAX 44-1438-740202)

Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, ANRITSU Company uses the following symbols to indicate safety-related information. For your own safety, please read the information carefully BEFORE operating the equipment.

WARNING

CAUTION

ACAUTION
$>18 \mathrm{~kg}$
HEAYY WEGGTT

WARNING indicates a hazard. It calls attention to a procedure that could result in personal injury or loss of life if not performed properly. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

CAUTION indicates a hazard. It calls attention to a procedure which, if not performed properly, could result in damage to or destruction of a component of the instrument. Do not proceed beyond a CAUTION note until the indicated conditions are fully understood and met.

The instrument is marked with this symbol to indicate that it is necessary for the user to refer to the instructions in the operation manual.

Indicates ground.

Indicates heavy weight equipment.

For Safety

When supplying power to this equipment, al ways use a three-wire power cable connected to a three-wire power line outlet. If power is supplied without grounding the equipment in this manner, there is a risk of receiving a severe or fatal electric shock.

Before changing the fuse, always remove the power cord from the power outlet. There is the risk of receiving a fatal electric shock if the fuse is replaced with the power cord connected.

Al ways use a new fuse of the type and rating specified by the fuse markings on the rear panel of the instrument.

WARNING

There are no operator serviceable components inside. Refer servicing of the instrument to qualified service technicians.

To prevent the risk of electrical shock or damage to precision components, do not remove the equipment covers.

\triangle ACAUTION
$>18 \mathrm{KO}$
HEAVY WEIGHT

WARNING

Use two or more people to lift and move this equipment, or use an equipment cart. There is a risk of back injury, if this equipment is lifted by one person.

Table of Contents

Chapter 1-General Information
1-1 SCOPE OF MANUAL 1-3
1-2 INTRODUCTION 1-3
1-3 DESCRIPTION 1-3
1-4 IDENTIFICATION NUMBER 1-6
1-5 ELECTRONIC MANUAL 1-6
1-6 RELATED MANUALS 1-6
GPIB Programming Manual 1-6
SCPI Programming Manual 1-6
Maintenance Manual 1-7
1-7 OPTIONS 1-7
1-8 PERFORMANCE SPECIFICATIONS 1-8
1-9 RECOMMENDED TEST EQUIPMENT 1-8
Chapter 2 - Installation
2-1 INTRODUCTION 2-3
2-2 INITIALINSPECTION 2-3
2-3 PREPARATION FOR USE 2-4
Power Requirements 2-4
Line Voltage Selection 2-4
Power Connection 2-4
Standby Operation 2-5
Warmup Time 2-6
Operating Environment 2-6
2-4 GPIB SETUP AND INTERCONNECTION 2-7
Interface Connector 2-7
Cable Length Restrictions 2-7
GPIB Interconnection 2-7
Setting the GPIB Address 2-7
Selecting the Line Terminator 2-9
Selecting the Interface Language. 2-9
2-5 RACK MOUNTING KIT INSTALLATION 2-10
Preliminary 2-10
Procedure 2-10

Table of Contents (Continued)

2-6 PREPARATION FOR STORAGE/SHIPMENT 2-13
Preparation for Storage 2-13
Preparation for Shipment 2-13
Chapter 3-Local (Front Pand) Operation
3-1 INTRODUCTION 3-5
3-2 FRONT PANEL LAYOUT 3-6
Line Key 3-6
Data Display Area 3-6
Data Entry Area 3-7
RF Output Control Key 3-7
Connectors 3-7
3-3 DATA DISPLAY AREA 3-8
Menu Display Format 3-9
Menu Keys 3-10
3-4
DATA ENTRY AREA 3-12
3-5 INSTRUMENT START-UP 3-14
Powering Up the 681XXB 3-14
Start-Up Display 3-14
Standby Operation 3-14
Self-Testing the 681XXB 3-15
Resetting to Default Parameters 3-15
3-6 ENTERING DATA 3-18
Opening the Parameter 3-18
Editing the Current Value 3-19
Entering a New Value 3-20
3-7 CW FREQUENCY OPERATION 3-21
Selecting CW Mode 3-21
Selecting a CW Frequency 3-21
Selecting a Power Level. 3-23
CW Ramp 3-24
3-8 SWEEP FREQUENCY OPERATION 3-25
Selecting Analog Sweep Mode. 3-25
Setting the Analog Sweep Time 3-26
Selecting a Sweep Trigger 3-27
Selecting Step Sweep M ode 3-28
Setting Step Size and Dwell Time. 3-29

Table of Contents (Continued)

> Selecting Manual Sweep M ode 3-30

Selecting a Sweep Range 3-31
Selecting a Power Level. 3-33
Frequency Markers. 3-34
Selecting Alternate Sweep M ode 3-36
3-9 FIXED POWER LEVEL OPERATION 3-39
Selecting Fixed Power Level Mode 3-39
Selecting a Power Level. 3-39
Level Offset 3-42
3-10 POWER LEVEL SWEEP OPERATION 3-43
Selecting CW Power Sweep Mode 3-43
Setting CW Power Sweep Step Size and
Dwell Time 3-44
Selecting a CW Power Sweep Trigger 3-45
Selecting a Power Level Sweep Range. 3-46
Selecting a Sweep Frequency/Step Power Mode . 3-48
Setting Power Level Step Size 3-49
3-11 LEVELING OPERATIONS 3-50
Selecting a Leveling Mode 3-50
Attenuator Decoupling 3-54
ALC Power Slope. 3-55
User Cal (User Level Flatness Correction) . . . 3-57
3-12 SIGNAL MODULATION 3-63
Amplitude Modulation Operating Modes 3-63
Providing Amplitude Modulation 3-63
Frequency Modulation Operating Modes 3-64
Providing Frequency Modulation 3-65
Square Wave M odulation Operating Modes . . . 3-67
Providing Square Wave Modulation 3-67
3-13 SYSTEM CONFIGURATION 3-70
Configuring the Front Panel 3-71
Configuring the Rear Panel 3-72
Configuring the RF 3-73
Configuring the GPIB 3-75
Setting Increment Sizes 3-78
3-14 SAVING/RECALLING INSTRUMENT SETUPS . 3-79
Saving Setups 3-79
Recalling Setups 3-79
Erasing Stored Setups 3-80

Table of Contents (Continued)

3-15 SECURE OPERATION 3-81
3-16 REFERENCE OSCILLATOR CALIBRATION 3-82
Chapter 4 - Local Operation-Menu Maps
4-1 INTRODUCTION 4-3
4-2 MENU MAP DESCRIPTION 4-3
Chapter 5-Operation Verification
5-1 INTRODUCTION 5-3
5-2 TEST EQUIPMENT 5-3
5-3 TEST RECORDS 5-3
5-4 INITIAL 681XXB CHECKOUT 5-4
Power Up 5-4
Self Test 5-4
Resetting the 681XXB 5-4
Warmup Time 5-4
5-5 CW FREQUENCY ACCURACY TEST 5-5
Test Setup 5-5
Test Procedure. 5-6
5-6 POWER LEVEL ACCURACY AND FLATNESS TESTS 5-13
Test Setup 5-13
Power Level Accuracy Test Procedure 5-14
Power Level Flatness Test Procedure 5-15
Chapter 6-Operator Maintenance
6-1 INTRODUCTION 6-3
6-2 ERROR AND WARNING/STATUS MESSAGES 6-3
Self-Test Error Messages. 6-3
Normal Operation Error and Warning/ Status Messages 6-8
6-3 TROUBLESHOOTING 6-10
6-4 ROUTINE MAINTENANCE 6-13
Cleaning the Fan Filter. 6-13
Cleaning the Data Display 6-13

Table of Contents (Continued)

Replacing the Line Fuse 6-14
Chapter 7 - UseWith Other Instruments
7-1 INTRODUCTION 7-3
7-2 MASTER-SLAVE OPERATION 7-4
Connecting the 68XXXBs 7-4
Initiating Master-Slave Operation 7-5
Master-Slave Operation 7-7
Master-Slave Operation in VNA Mode 7-7
Terminating Master-Slave Operation 7-9
7-3 USE WITH A 562 SCALAR NETWORK ANALYZER 7-10
Connecting the 681XXB to the 562 7-10
7-4 USE WITH A 360B VECTOR NETWORK ANALYZER 7-12
Connecting the 681XXB to the 360B 7-12
Modes of Operation. 7-13
Source Lock Mode 7-13
Tracking Mode 7-15
7-5 USE WITH A HP8757D SCALAR NETWORK ANALYZER 7-17
Connecting the 681XXB to the HP8757D 7-17
Setting up the 681XXB 7-18
Initiating HP8757D SNA Operation 7-19
Appendix A - Rear Panel Connectors
A-1 INTRODUCTION A-1
A-2 REAR PANEL CONNECTORS A-1
A-3 CONNECTOR PINOUT DIAGRAMS A-1
Appendix B - Performance Specifications

Chapter 1 General Information

Table of Contents

1-1 SCOPE OF MANUAL. 1-3
1-2
INTRODUCTION 1-3
1-3 DESCRIPTION 1-3
1-4 IDENTIFICATION NUMBER 1-6
1-5 ELECTRONIC MANUAL 1-6
1-6 RELATED MANUALS 1-6
GPIB Programming Manual 1-6
SCPI Programming Manual 1-6
Maintenance Manual 1-7
1-7 OPTIONS 1-7
1-8 PERFORMANCE SPECIFICATIONS 1-8
1-9
RECOMMENDED TEST EQUIPMENT 1-8

Figure 1-1. Series 681XXB Synthesized Sweep Generator

Chapter 1 General Information

1-1 scope of manual

1-2 introduction

1-3 description

This manual provides general information, installation, and operating information for the ANRITSU Series 681XXB Synthesized Sweep Generator. (Throughout this manual, the terms 681XXB and sweep generator will be used interchangeably to refer to the instrument.) Manual organization is shown in the table of contents.

This chapter contains general information about the series 681XXB sweep generators. It includes a general description of the instrument and information on its identification number, related manuals, options, and performance specifications. A listing of recommended test equipment is also provided.

The Series 681XXB Synthesized Sweep Generators are microproces-sor-based, synthesized signal sources with high resolution phase-lock capability. They generate both broad (full range) and narrow band sweeps and discrete CW frequencies across the frequency range of 10 MHz to 65 GHz . All functions of the sweep generator are fully controllable locally from the front panel or remotely (except for power on/standby) via the IEEE-488 General Purpose Interface Bus (GPIB).

The series presently consists of 15 models covering a variety of frequency and power ranges. Table 1-1, on page 1-4, lists models, frequency ranges, and maximum leveled output.

Table 1-1. Series 681XXB Models (1 of 2)

681XXB Model	Frequency (GHz)	Output Power	Output Power w/Step Attenuator
68137B	$2.0-20.0 \mathrm{GHz}$	+13.0 dBm	+11.0 dBm
68145B	$0.5-20.0 \mathrm{GHz}$	+13.0 dBm	+11.0 dBm
68147B	$0.01-20.0 \mathrm{GHz}$	+13.0 dBm	+11.0 dBm
68153B	$\begin{gathered} 2.0-20.0 \mathrm{GHz} \\ 20.0-26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +9.0 \mathrm{dBm} \\ & +6.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +7.0 \mathrm{dBm} \\ & +3.5 \mathrm{dBm} \end{aligned}$
68155B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \\ 20.0-26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +9.0 \mathrm{dBm} \\ & +6.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +7.0 \mathrm{dBm} \\ & +3.5 \mathrm{dBm} \end{aligned}$
68159B	$\begin{gathered} 0.01-2.0 \mathrm{GHz} \\ 2.0-20.0 \mathrm{GHz} \\ 20.0-26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +9.0 \mathrm{dBm} \\ & +6.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +7.0 \mathrm{dBm} \\ & +3.5 \mathrm{dBm} \end{aligned}$
68163B	$\begin{gathered} 2.0-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +9.0 \mathrm{dBm} \\ & +6.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +7.0 \mathrm{dBm} \\ & +3.0 \mathrm{dBm} \end{aligned}$
68165B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +9.0 \mathrm{dBm} \\ & +6.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +7.0 \mathrm{dBm} \\ & +3.0 \mathrm{dBm} \end{aligned}$
68169B	$\begin{gathered} 0.01-2.0 \mathrm{GHz} \\ 2.0-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +9.0 \mathrm{dBm} \\ & +6.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +7.0 \mathrm{dBm} \\ & +3.0 \mathrm{dBm} \end{aligned}$
68175B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \\ 40.0-50.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +10.0 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \end{aligned}$	$\begin{gathered} +10.0 \mathrm{dBm} \\ +8.5 \mathrm{dBm} \\ 0.0 \mathrm{dBm} \\ -1.0 \mathrm{dBm} \end{gathered}$
68177B	$\begin{gathered} 0.01-2.0 \mathrm{GHz} \\ 2.0-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \\ 40.0-50.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +12.0 \mathrm{dBm} \\ & +10.0 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \end{aligned}$	$\begin{gathered} +10.0 \mathrm{dBm} \\ +8.5 \mathrm{dBm} \\ 0.0 \mathrm{dBm} \\ -1.0 \mathrm{dBm} \end{gathered}$
68185B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \\ 40.0-50.0 \mathrm{GHz} \\ 50.0-60.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { +11.0 dBm } \\ & \text { +10.0 dBm } \\ & \text { +2.5 dBm } \\ & \text { +2.0 dBm } \\ & +2.0 \mathrm{dBm} \end{aligned}$	$\begin{gathered} +10.0 \mathrm{dBm} \\ +8.5 \mathrm{dBm} \\ 0.0 \mathrm{dBm} \\ -1.5 \mathrm{dBm} \\ -2.0 \mathrm{dBm} \end{gathered}$
68187B	$\begin{gathered} 0.01-2.0 \mathrm{GHz} \\ 2.0-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \\ 40.0-50.0 \mathrm{GHz} \\ 50.0-60.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +12.0 \mathrm{dBm} \\ & +10.0 \mathrm{dBm} \\ & +2.5 \mathrm{dBm} \\ & +2.0 \mathrm{dBm} \\ & +2.0 \mathrm{dBm} \end{aligned}$	$\begin{gathered} +10.0 \mathrm{dBm} \\ +8.5 \mathrm{dBm} \\ 0.0 \mathrm{dBm} \\ -1.5 \mathrm{dBm} \\ -2.0 \mathrm{dBm} \end{gathered}$
68195B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \\ 40.0-50.0 \mathrm{GHz} \\ 50.0-65.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} +11.0 \mathrm{dBm} \\ +10.0 \mathrm{dBm} \\ +2.5 \mathrm{dBm} \\ 0.0 \mathrm{dBm} \\ -2.0 \mathrm{dBm} \end{gathered}$	Not Available

Table 1-1. Series 681XXB M odels (2 of 2)

681XXB Model	Frequency $(\mathbf{G H z})$	Output Power	Output Power w/Step Attenuator
	$0.01-2.0 \mathrm{GHz}$	+12.0 dBm	
	$2.0-20.0 \mathrm{GHz}$	+10.0 dBm	
68197 B	$20.0-40.0 \mathrm{GHz}$	+2.5 dBm	Not Available
	$40.0-50.0 \mathrm{GHz}$	0.0 dBm	
	$50.0-65.0 \mathrm{GHz}$	-2.0 dBm	

With Option 15A (High Power) Installed			
68137B	$2.0-20.0 \mathrm{GHz}$	+17.0 dBm	+15.0 dBm
68145B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +17.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +15.0 \mathrm{dBm} \end{aligned}$
68147B	$\begin{aligned} & 0.01-2.0 \mathrm{GHz} \\ & 2.0-20.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +17.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +15.0 \mathrm{dBm} \end{aligned}$
68153B	$\begin{gathered} 2.0-20.0 \mathrm{GHz} \\ 20.0-26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +10.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +7.5 \mathrm{dBm} \end{aligned}$
68155B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \\ 20.0-26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +13.0 \mathrm{dBm} \\ & +10.0 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +11.0 \mathrm{dBm} \\ & +7.5 \mathrm{dBm} \\ & \hline \end{aligned}$
68159B	$\begin{gathered} 0.01-2.0 \mathrm{GHz} \\ 2.0-20.0 \mathrm{GHz} \\ 20.0-26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +13.0 \mathrm{dBm} \\ & +10.0 \mathrm{dBm} \\ & \hline \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +11.0 \mathrm{dBm} \\ & +7.5 \mathrm{dBm} \\ & \hline \end{aligned}$
68163B	$\begin{gathered} 2.0-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} +13.0 \mathrm{dBm} \\ +6.0 \mathrm{dBm} \end{gathered}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +3.0 \mathrm{dBm} \end{aligned}$
68165B	$\begin{gathered} 0.5-2.2 \mathrm{GHz} \\ 2.2-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} \hline+13.0 \mathrm{dBm} \\ +13.0 \mathrm{dBm} \\ +6.0 \mathrm{dBm} \\ \hline \end{gathered}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +11.0 \mathrm{dBm} \\ & +3.0 \mathrm{dBm} \\ & \hline \end{aligned}$
68169B	$\begin{gathered} 0.01-2.0 \mathrm{GHz} \\ 2.0-20.0 \mathrm{GHz} \\ 20.0-40.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & +13.0 \mathrm{dBm} \\ & +13.0 \mathrm{dBm} \\ & +6.0 \mathrm{dBm} \\ & \hline \end{aligned}$	$\begin{aligned} & +11.0 \mathrm{dBm} \\ & +11.0 \mathrm{dBm} \\ & +3.0 \mathrm{dBm} \\ & \hline \end{aligned}$
68175B	$0.5-50.0 \mathrm{GHz}$	Standard	Standard
68177B	$0.01-50.0 \mathrm{GHz}$	Standard	Standard
68185B	$0.5-60.0 \mathrm{GHz}$	Standard	Standard
68187B	$0.01-60.0 \mathrm{GHz}$	Standard	Standard
68195B	$0.5-65.0 \mathrm{GHz}$	Standard	Not Available
68197B	$0.01-65.0 \mathrm{GHz}$	Standard	Not Available

1-4
 IDENTIFICATION NUMBER

1-5 electronic manual

1-6 related manuals

All ANRITSU instruments are assigned a unique six-digit ID number, such as "301001". The ID number is imprinted on a decal that is affixed to the rear panel of the unit. Special-order instrument configurations also have an additional special serial number tag attached to the rear panel of the unit.

When ordering parts or corresponding with ANRITSU Customer Service, please use the correct serial number with reference to the specific instrument's model number (i.e., Model 68147B Synthesized Sweep Generator, Serial No. 301001).

This manual is available on CD ROM as an Adobe Acrobat Portable Document Format (*.pdf) file. The file can be viewed using Acrobat Reader, a free program that is also included on the CD ROM. The file is "linked" such that the viewer can choose a topic to view from the displayed "bookmark" list and "jump" to the manual page on which the topic resides. The text can also be word-searched. Contact ANRITSU Customer Service for price and availability.

This is one of a four manual set that consists of an Operation Manual, a GPIB Programming Manual, a SCPI Programming Manual, and a Maintenance Manual.

SCPI Pro- This manual provides information for remote operagramming Manual

Maintenance Manual

The Maintenance M anual supplies service information for all models in the 681XXB series. The service information includes functional circuit descriptions, block diagrams, performance verification tests, calibration procedures, troubleshooting data, and assembly and component removal/replacement procedures. The ANRITSU part number for the Maintenance Manual is 10370-10262.

1-7 optons

The following options are available.
Option 1, Rack Mounting. Rack mount kit containing a set of track slides (90° tilt capability), mounting ears, and front panel handles for mounting the instrument in a standard 19-inch equipment rack.

Option 2A, 110 dB Step Attenuator. Adds a 10 dB per step attenuator with a 110 dB range for models having a high-end frequency of $\leq 26.5 \mathrm{GHz}$. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.
Option 2B, $\mathbf{1 1 0} \mathbf{d B}$ Step Attenuator. Adds a 10 dB per step attenuator with a 110 dB range for models having a high-end frequency of $\leq 40 \mathrm{GHz}$. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.
Option 2C, $\mathbf{9 0} \mathbf{~ d B}$ Step Attenuator. Adds a 10 dB per step attenuator with a 90 dB range for models having a high-end frequency of $\leq 50 \mathrm{GHz}$. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.

Option 2D, 90 dB Step Attenuator. Adds a 10 dB per step attenuator with a 90 dB range for models having a high-end frequency of $\leq 60 \mathrm{GHz}$. Output power is selected directly in dBm on the front panel (or via GPIB). Rated RF output power is reduced.

Option 9, Rear Panel RF Output. Moves the RF output connector to the rear panel.
Option $\mathbf{1 1}, \mathbf{0 . 1} \mathbf{~ H z}$ Frequency Resolution. Provides frequency resolution of 0.1 Hz .
Option 14, ANRITSU 360B VNA Compatibility. Modifies rack mounting hardware to mate unit in a ANRITSU 360B VNA console.
Option 15A, High Power Output. Adds high-power RF components to the instrument providing increased RF output power in the $2-26.5 \mathrm{GHz}$ frequency range. Option 15A is standard in models having a high-end frequency that is $>40 \mathrm{GHz}$.

Option 16, High-Stability Time Base. Adds an ovenized, 10 MHz crystal oscillator with $<5 \times 10^{-10}$ /day frequency stability.
$1-8$
PERFORMANCE SPECIFICATIONS

1-9 recommended test EQUIPMENT

Option 17A, No Front Panel. Deletes the front panel for use in remote control applications where a front panel display or keyboard control are not needed.

Option 18, mmWave Module Bias Output. Provides bias output for 54000-xWRxx Millimeter Wave Source M odules. BNC Twinax connector, rear panel.
Option 19, SCPI Programmability. Adds GPIB command mnemonics complying with Standard Commands for Programmable Instruments (SCPI), Version 1993.0. SCPI programming complies with IEEE 488.2-1987.

Series 681XXB Synthesized Sweep Generator performance specifications are provided in Appendix B.

Table 1-2 lists the recommended test equipment for performing the Se ries 681XXB Synthesized Sweep Generator operation verification tests in Chapter 5.

Table 1-2. Recommended Test Equipment

Instrument	Critical Specification	Recommended Manufacturer/Model
Frequency Counter, with Cable Kit and External Mixer	Range: 0.01 to 65 GHz Input Z: 50Ω Resolution: 1 Hz Other: External Time Base Input	EIP Microwave, Inc. Models 538B, 548B, or 578B, with Cable Kit: Option 590 and External Mixer: Option 91 (26.5 to 40 GHz) Option 92 (40 to 60 GHz) Option 93 (60 to 90 GHz)
Power Meter, with Power Sensor	Range: -30 to +20 dBm ($1 \mu \mathrm{~W}$ to 100 mW)	Hewlett-Packard Model 437B, with Power Sensor: HP 8487A (0.01 to 50 GHz)
Oscilloscope	Bandwidth: DC to 150 MHz Vertical Sensitivity: $2 \mathrm{mV} /$ division Horiz Sensitivity: $50 \mathrm{~ns} /$ division	Tektronix, Inc. Model TAS485
Adapter	K (male) to 2.4 mm (female) Adapts the Power Sensor, HP 8487A, to the 681XXB RF OUTPUT connector ($\leq 40 \mathrm{GHz}$ models)	Hewlett-Packard Part Number: HP 11904D

Chapter 2
 Installation

Table of Contents

2-1 INTRODUCTION 2-3
2-2 INITIAL INSPECTION 2-3
2-3 PREPARATION FOR USE 2-4
Power Requirements 2-4
Line Voltage Selection 2-4
Power Connection 2-4
Standby Operation. 2-5
Warmup Time 2-6
Operating Environment 2-6
2-4 GPIB SETUP AND INTERCONNECTION 2-7
Interface Connector 2-7
Cable Length Restrictions 2-7
GPIB Interconnection 2-7
Setting the GPIB Address 2-7
Selecting the Line Terminator 2-9
Selecting the Interface Language. 2-9
2-5 RACK MOUNTING KIT INSTALLATION 2-10
Preliminary 2-10
Procedure 2-10
2-6 PREPARATION FOR STORAGE/SHIPMENT 2-13
Preparation for Storage 2-13
Preparation for Shipment 2-13

Chapter 2 Installation

2-1
INTRODUCTION

2-2
INITIAL INSPECTION

This chapter provides installation instructions for the Series 681XXB Synthesized Sweep Generator. It includes information on initial inspection, preparation for use, storage, and reshipment, and General Purpose Interface Bus (GPIB) setup and interconnections.
\qquad
Use two or more people to lift and move this equipment, or use an equipment cart. There is a risk of back injury, if this equipment is lifted by one person.

Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, retain until the contents of the shipment have been checked against the packing list and the sweep generator has been checked for mechanical and electrical operation.

If the shipment is incomplete or if the sweep generator is damaged mechanically or electrically, notify your local sales representative or ANRITSU Customer Service. If either the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as ANRITSU. Keep the shipping materials for the carrier's inspection.

PREPARATION FOR USE

2-3 PREPARATION FOR USE
Preparation for use consists of checking that the rear panel line voltage selector switch is set for the correct line voltage and connecting the sweep generator to the power source. The following paragraphs provide these procedures along with information about power requirements, warmup times, and the operating environment.

Power Requirements

The sweep generator accepts 90 to 132 Vac and 180 to $264 \mathrm{Vac}, 48$ to 400 Hz , single-phase power. Power consumption is 400 VA maximum. The sweep generator is intended for Installation Category (Overvoltage Category) II.

Line Voltage Selection

The line voltage selector switch on the rear panel can be set for either 110 Vac or 220 Vac operation (Figure 2-1). When the switch is set to 110 Vac , the 681 XXB accepts 90 to 132 Vac line voltage. When the switch is set to 220 Vac , the 681 XXB accepts 180 to 264 Vac line voltage. If the selector setting is incorrect for the line voltage available, change it to the correct setting.

Whenever the selector setting is changed, the line fuse must be changed to the correct value for the line voltage selected. Line fuse values for the line voltages are printed on the rear panel next to the fuse holder.

When supplying power to this equipment, al ways use a three-wire power cable connected to a three-wire power line outlet. If power is supplied without grounding the equipment in this manner, there is a risk of receiving a severe or fatal electric shock.

Power Connection

Connecting the 681XXB to line power automatically places it in operation (front panel OPERATE LED on). To connect it to the power source, plug the female end of the power cable into the input line voltage receptacle on the rear panel (Figure 2-1). Then plug the male end of the power cord into a threewire power line outlet.

Warmup Time
From a cold start (ac power application), the sweep generator requires approximately 120 hours (5 days) of warm up to achieve 2×10^{-8} /day frequency accuracy and stability.

If the Option 16 time base is installed, the 681XXB requires approximately 120 hours (5 days) of warm up to achieve $5 \times 10^{-10} /$ day frequency accuracy and stability. Instruments disconnected from AC power for more than 72 hours require 30 days to return to specified aging.

When placing the 681XXB in operation from standby, allow 30 minutes warmup to assure stable operation.

Operating The 681XXB can be operated within the following Environment environmental limits.

- Temperature. $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(-32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$.

Humidity. 5 to 95% relative at $40^{\circ} \mathrm{C}$.

- Altitude. up to 4600 meters (approximately 15,000 feet).
- Cooling. Internal cooling is provided by forced airflow from the fan mounted on the rear panel.
\qquad
Before installing the 681XXB in its operating environment, ensure that all airflow passages at the sides and rear of the instrument are clear. This is of particular importance whenever the unit is being rack-mounted.

Keep the cooling fan filter clean so that the ventilation holes are not obstructed. A blocked fan filter can cause the instrument to overheat and shut down.

The 681XXB provides automated microwave signal generation via the GPIB. The following paragraphs provide information about interface connections, cable requirements, setting the GPIB operating parameters, and selecting the external interface language.

$$
\begin{array}{ll}
\text { Interface } & \text { Interface between the sweep generator and other } \\
\text { Connector } & \text { devices on the GPIB is via a 24-wire interface cable. } \\
& \text { This cable uses connector shells having two connec- } \\
& \text { tor faces. These double-faced connectors allow for } \\
\text { the parallel connection of two or more cables to a } \\
& \text { single device. Figure 2-1 shows the location of the } \\
\text { rear panel GPIB connector. }
\end{array}
$$

Cable Length Restrictions

The GPIB can accommodate up to 15 instruments at any one time. To achieve design performance on the bus, proper timing and voltage level relationships must be maintained. If either the cable length between separate instruments or the cumulative cable length between all instruments is too long, the data and control lines cannot be driven properly and the system may fail to perform. Cable length restrictions are as follows:

- No more than 15 instruments may be installed on the bus.
- Total cumulative cable length in meters may not exceed two times the number of bus instruments or 20 meters-whichever is less.

NOTE

For low EMI applications, the GPIB cable should be a fully shielded type, with well-grounded metal-shell connectors

GPIB Interconnection

Setting the GPIB Address

The only interconnection required for GPIB operation is between the sweep generator and the controlIer. This interconnection is via a standard GPIB cable. The ANRITSU Part number for such a cable is 2000-1, -2 , or -4 (1,2 , or 4 meters in length).

The default GPIB address is 5 . If a different GPIB address is desired, it can be set from the front panel using the Configure GPIB Menu.

To change the GPIB address, first press the front panel main menu key labeled SYSTEM. The System Menu (shown on the following page) is displayed.

Now press the menu soft-key Config. The System Configuration Menu (below) is displayed.

To go to the Configure GPIB menu from this menu, press the menu soft-key GPIB. The Configure GPIB Menu (below) is displayed.

Press the menu soft-key GPIB Address to change the current GPIB address of the sweep generator. Enter a new address using the cursor control key or the data entry keypad and the terminator key

The new GPIB address will now appear on the display. The entry must be between 1 and 30 to be recognized as a valid GPIB address.

Selecting the Line Terminator

Data is delimited on the GPIB by either the carriage return (CR) ASCII character or both the carriage return and line feed (CR/LF) ASCII characters. Which character is used depends upon the requirements of the system controller. Most modern controllers can use either CR or CR/LF, while many older controllers require one or the other. Consult the controller's manual for its particular requirements.

From the Configure GPIB Menu display, you can select which GPIB terminator to use by pressing the menu soft-key Line Term. This menu soft-key toggles the GPIB terminator between CR and CR/LF. The current selection appears on the display.

Selecting the Interface Language

Series 681XXB Synthesized Sweep Generators can be remotely operated via the GPIB using one of two external interface languages-Native or SCPI (Op-
tion 19). The Native interface language uses a set of 681XXB GPIB Product Specific commands to control the instrument; the SCPI interface language uses a set of the Standard Commands for Programmable Instruments commands to control the unit.

The Configure GPIB Menu has an additional menu display. For instruments with Option 19, selection of which external interface language is to be used is made from this additional menu. From the Configure GPIB Menu display, you can access the additional menu by pressing More. The additional Configure GPIB Menu (below) is displayed.

Press Native SCPI to select the external interface language to be used. This menu soft-key toggles the language selection between Native and SCPI. The current selection appears on the display.
RACK MOUNTING KIT

INSTALLATION

2-5 rack mounting кit INSTALLATION

The rack mounting kit (Option 1) contains a set of track slides (90° tilt capability), mounting ears, and front panel handles for mounting the sweep generator in a standard 19 -inch equipment rack. The following procedure provides instructions for installing the rack mounting hardware on to the instrument. Refer to Figures 2-2 and 2-3 during this procedure.

Preliminary Disconnect the power cord and any other cables from the instrument.

Procedure Install the rack mounting hardware as follows:
Step 1 Using a Phillips screwdriver, remove the screws and the front handle assemblies from the instrument. (For instruments not having front handles, remove the screws and the front top and bottom feet from the instrument.) Retain the screws.

Step 2 Remove the four feet from the rear of the instrument. Retain the screws.

Step 3 Remove the screws and the carrying handle from the side handle cover. (The two screws fastening the carrying handle through the side handle cover to the chassis are accessable by lifting up the rubber covering at each end of the handle.)

Figure 2-2. Front Handle, Feet, and Carrying Handle Removal

RACK MOUNTING KIT INSTALLATION

Step 4 Remove the inner slide assemblies from the outer slide assemblies.

NOTE

The screws with green heads have metric threads. When it becomes necessary to replace any of these screws, always use the exact replacement green-headed screws (ANRITSU P/N 2000-560) to avoid damage to the instrument.

Step 5 Place the left side inner slide assembly onto the instrument case with the handle towards the front of the instrument (Figure 2-3).

Step 6 Insert two green-headed screws through the holes in the slide assembly behind the handle and into the metric tapped holes in the side of the instrument.

Step 7 Insert two green-headed screws through the holes near the rear of the slide assembly and into the metric tapped holes in the side of the instrument.

Step 8 Insert the two SAE threaded screws (removed from the feet) through the 90° tabs on the rear of the slide assembly and into the rear panel of the instrument.

Step 9 Using the Phillips screwdriver, tighten all screws holding the left side slide assembly to the instrument chassis.

Figure 2-3. Rack Mounting Hardware Installation

RACK MOUNTING KIT INSTALLATION

Step 10 Place the right side inner slide assembly onto the instrument case with the handle

 towards the front of the instrument.Step 11 Insert two green-headed screws through the holes in the slide assembly behind the handle and into the metric tapped holes in the side of the instrument.

Step 12 Insert two green-headed screws through the holes near the rear of the slide assembly and into the metric tapped holes in the side of the instrument.

Step 13 Insert the two SAE threaded screws (removed from the feet) through the 90° tabs on the rear of the slide assembly and into the rear panel of the instrument.

Step 14 Using the Phillips screwdriver, tighten all screws holding the right side slide assembly to the instrument chassis.

Step 15 With the appropriate hardware, install the outer slide assemblies onto the equipment rack.

Step 16 Lift the sweep generator into position. Align the inner and outer slide assemblies and slide the instrument into the rack. Realign the hardware as needed for smooth operation.

$\triangle \mathrm{ACAUTION}$
$>18 \mathrm{KO}$
HEAVY WEIGHT

Use two or more people to lift and move this equipment, or use an equipment cart. There is a risk of back injury, if this equipment is lifted by one person.

2-6
 PREPARATION FOR STORAGE/SHIPMENT

The following paragraphs give instructions for preparing the 681XXB for storage or shipment.

Preparation Preparing the sweep generator for storage consists for Storage

Preparation for Shipment

 of cleaning the unit, packing the inside with mois-ture-absorbing desiccant crystals, and storing the unit in a temperature environment that is maintained between $-40^{\circ} \mathrm{C}$ and $+75^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $+176^{\circ} \mathrm{F}$).To provide maximum protection against damage in transit, the sweep generator should be repackaged
in the original shipping container. If this container is no longer available and the unit is being returned to ANRITSU for repair, advise ANRITSU Customer Service; they will send a new shipping container free of charge. In the event neither of these two options is possible, instructions for packaging and shipment are given below.

Use a Suitable Container.

Obtain a corrugated cardboard carton with a 275pound test strength. This carton should have inside dimensions of no less than six inches larger than the unit dimensions to allow for cushioning.

Protect the Instrument.

Surround the unit with polyethylene sheeting to protect the finish.

Cushion the Instrument.

Cushion the instrument on all sides by tightly packing dunnage or urethane foam between the carton and the unit. Provide at least three inches of dunnage on all sides.

Seal the Container.

Seal the carton by using either shipping tape or an industrial stapler.

Address the Container.

If the instrument is being returned to ANRITSU for service, mark the address of the appropriate ANRITSU service center (Table 2-1) and your return address on the carton in one or more prominent locations.

INSTALLATION	ANRITSU

Table 2-1. ANRITSU Service Centers

UNITED STATES	FRANCE	KOREA
ANRITSU COMPANY	ANRITSU S.A	ANRITSU CORPORATION LTD
685 Jarvis Drive	9 Avenue du Quebec	\#901 Daeo Bldg. 26-5
Morgan Hill, CA 95037-2809	Zone de Courtaboeuf	Yeoido Dong, Youngdeungpo
Telephone: (408) 776-8300	91951 Les Ulis Cedex	Seoul Korea 150010
FAX: (408) 776-1744	Telephone: 016-44-66-546	Telephone: 02-782-7156
	FAX: 016-44-61-065	FAX: 02-782-4590
ANRITSU COMPANY		
10 New Maple Ave., Unit 305	GERMANY	SINGAPORE
Pine Brook, NJ 07058	ANRITSU GmbH	ANRITSU (SINGAPORE) PTE LTD
Telephone: (201) 227-8999	Grafenberger Allee 54-56	3 Shenton Way \#24-03
FAX: (201) 575-0092	D-40237 Dusseldorf	Shenton House
	Germany	Singapore 0106
ANRITSU COMPANY	Telephone: 0211-68550	Telephone: 022-65-206
1155 E. Collins Blvd	FAX: 0211-685555	FAX: 022-65-207
Richardson, TX 75081		
Telehone: 1-800-ANRITSU	INDIA	SOUTH AFRICA
FAX: 972-671-1877	MEERA AGENCIES (P) LTD.	ETESCSA
	A-23 Hauz Khas	12 Surrey Square Office Park
AUSTRALIA	New Delhi 110016	330 Surrey Avenue
ANRITSU PTY. LTD.	Telephone: 011-685-3959	Ferndale, Randburt, 2194
Unit 3, 170 Foster Road	FAX: 011-686-6720	South Africa
Mt Waverley, VIC 3149		Telephone: 011-27-11-787-7200
Australia	ISRAEL	Fax: 011-27-11-7887-0446
Telephone: 03-9558-8177	TECH-CENT, LTD	
Fax: 03-9558-8255	Haarad St. No. 7, Ramat Haahayal	SWEDEN
	Tel-Aviv 69701	ANRITSU AB
BRAZIL	Telephone: (03) 64-78-563	Botvid Center
ANRITSU ELECTRONICA LTDA.	FAX: (03) 64-78-334	S-15 85
Praia de Botafogo 440, Sala 2401		Stockholm, Sweden
CEP22250-040, Rio de Janeiro,RJ,	ITALY	Telephone: (08) 534-717-00
Brasil	ANRITSU Sp.A	FAX: (08) 534-717-30
Telephone: 021-28-69-141	Rome Office	
Fax: 021-53-71-456	Via E. Vittorini, 129	TAIWAN
	00144 Roma EUR	ANRITSU CO., LTD.
CANADA	Telephone: (06) 50-22-666	8F, No. 96, Section 3
ANRITSU INSTRUMENTS LTD.	FAX: (06) 50-22-4252	Chien Kuo N. Road
215 Stafford Road, Unit 102		Taipei, Taiwan, R.O.C.
Nepean, Ontario K2H 9C1	JAPAN	Telephone: (02) 515-6050
Telephone: (613) 828-4090	ANRITSU CORPORATION	FAX: (02) 509-5519
FAX: (613) 828-5400	1800 Onna Atsugi-shi	
	Kanagawa-Prf. 243 Japan	UNITED KINGDOM
CHINA	Telephone: 0462-23-1111	ANRITSU LTD.
INSTRIMPEX ANRITSU PRODUCT	FAX: 0462-25-8379	200 Capability Green
SERVICE CENTER		Luton, Bedfordshire
NO. 1515		LU1 3LU, England
Beijing Fortune Building		Telephone: 015-82-41-88-53
5 Dong San Huan Bei Lu		FAX: 015-82-31-303
Chao Yang-qu		
Beijing, China		
Telephone: 10-6590-9230		
FAX: 10-6590-9235		

Chapter 3 Local (Front Panel) Operation

Table of Contents

3-1 INTRODUCTION 3-5
3-2
FRONT PANEL LAYOUT 3-6
Line Key 3-6
Data Display Area 3-6
Data Entry Area 3-7
RF Output Control Key 3-7
Connectors 3-7
3-3
DATA DISPLAY AREA 3-8
Menu Display Format 3-9
Menu Keys 3-10
3-4 DATA ENTRY AREA 3-12
3-5 INSTRUMENT START-UP 3-14
Powering Up the 681XXB 3-14
Start-Up Display 3-14
Standby Operation 3-14
Self-Testing the 681XXB 3-15
Resetting to Default Parameters 3-15
3-6 ENTERING DATA 3-18
Opening the Parameter 3-18
Editing the Current Value 3-19
Entering a New Value 3-20

Table of Contents (Continued)

3-7 CW FREQUENCY OPERATION 3-21
Selecting CW Mode 3-21
Selecting a CW Frequency 3-21
Selecting a Power Level. 3-23
CW Ramp 3-24
3-8 SWEEP FREQUENCY OPERATION 3-25
Selecting Analog Sweep Mode. 3-25
Setting the Analog Sweep Time. 3-26
Selecting a Sweep Trigger 3-27
Selecting Step Sweep M ode 3-28
Setting Step Size and Dwell Time. 3-29
Selecting Manual Sweep Mode 3-30
Selecting a Sweep Range 3-31
Selecting a Power Level. 3-33
Frequency Markers 3-34
Selecting Alternate Sweep M ode 3-36
3-9 FIXED POWER LEVEL OPERATION 3-39
Selecting Fixed Power Level Mode 3-39
Selecting a Power Level. 3-39
Level Offset 3-42
3-10 POWER LEVEL SWEEP OPERATION 3-43
Selecting CW Power Sweep Mode 3-43
Setting CW Power Sweep Step Size and Dwell Time 3-44
Selecting a CW Power Sweep Trigger 3-45
Selecting a Power Level Sweep Range. 3-46
Selecting a Sweep Frequency / Step Power Mode 3-48
Setting Power Level Step Size 3-49
3-11 LEVELING OPERATIONS 3-50
Selecting a Leveling Mode 3-50
Attenuator Decoupling 3-54
ALC Power Slope. 3-55
User Cal (User Level Flatness Correction) 3-57

Table of Contents (Continued)

3-12 SIGNAL MODULATION 3-63
Amplitude Modulation Operating Modes 3-63
Providing Amplitude Modulation 3-63
Frequency Modulation Operating Modes 3-64
Providing Frequency Modulation 3-65
Square Wave Modulation Operating Modes . . . 3-67
Providing Square Wave Modulation 3-67
3-13 SYSTEM CONFIGURATION 3-70
Configuring the Front Panel 3-71
Configuring the Rear Panel 3-72
Configuring the RF 3-73
Configuring the GPIB 3-75
Setting Increment Sizes 3-78
3-14 SAVING/RECALLING INSTRUMENT SETUPS . 3-79
Saving Setups 3-79
Recalling Setups 3-79
Erasing Stored Setups 3-80
3-15 SECURE OPERATION 3-81
3-16 REFERENCE OSCILLATOR CALIBRATION . . . 3-82

Chapter 3 Local (Front Panel) Operation

3-1 introduction
This chapter provides information and instructions on operating the Series 681XXB Synthesized Sweep Generator using the front panel controls. It contains the following:

- Illustrations and diagrams of the front panel, data display area, and data entry area that identify and describe all front panel controls, inputs, and outputs.
- An annotated diagram of the menu display format showing where the current frequency, power, and modulation information is displayed.
- Instructions for performing sweep generator operations; namely, frequency and frequency sweep, power level and power sweep, signal modulation, saving and recalling instrument setups, and system configuration.

3-2 fRONT PANEL LAYOUT
The 681XXB front panel is divided into two main areas-the data display area and the data entry area. The following paragraphs provide a brief description of the front panel controls, inputs, outputs, and data display and data entry areas as shown in Figure 3-1. Detailed descriptions of the data display and data entry areas are contained in paragraphs 3-3 and 3-4.

Figure 3-1. Front Pand, 681XXB Synthesized Swep Generator

Line Key Area

Data Display The data display area consists of the data display
The line key provides for turning the sweep generator on and off. STANDBY (off) is indicated by an orange LED; OPERATE (on) by a green LED.
and the surrounding menu keys.

Data Display

The data display provides information about the current status of the 681XXB in a menu display format. This information includes the operating mode of the instrument, the value of the active frequency and power level parameters, and the modulation status.

Menu Keys

Menu keys provide for selecting the operating mode, parameters, and configuration of the sweep generator.

Data Entry Area

RF Output Control Key

Connectors

The data entry area consists of data entry keys and controls that provide for (1) changing values for each 681XXB parameter, and (2) terminating the value entry and assigning the appropriate units ($\mathrm{GHz}, \mathrm{MHz}, \mathrm{dBm}$, etc.).

The RF output control key provides for turning the RF output power on and off. OUTPUT OFF is indicated by a red LED; OUTPUT ON by a yellow LED.

The front panel has both input and output connectors.

Modulation Connectors

The modulation connectors provide for applying external AM, FM, or Square Wave modulation to the RF output signal.

External ALC Connector

The external ALC connector provides for leveling the RF output signal externally using either a detector or a power meter.

RF Output Connector

The RF output connector provides RF output from a 50Ω source.

NOTE
To prevent power losses due to an impedance mismatch, the mating connector and cable should also be rated at 50Ω.

3-3 dATA DISPLAY AREA

The data display area consists of the data display and the surrounding menu keys. The data display is a dot matrix liquid crystal display (LCD) that provides 16 lines of 40 characters each. Information is presented on the LCD in the form of menu displays. The menu keys either select the main menu to be displayed, select a sub-menu of the current menu display, or control a function on the current menu display.

Figure 3-2 shows the format of the menu display and identifies the display elements. It also shows the placement of the menu keys in reIation to the display. The paragraphs that follow provide descriptions of the menu display elements and the menu keys.

Figure 3-2. Front Pand Data Display Area

Menu Display Format

The menu display is divided into specific areas that show the frequency, power level, and modulation information for the current sweep generator setup. Menu labels for the current menu's soft-keys appear along the bottom and right side of the display.

Title Bars

A shaded title bar identifies each parameter area. M ode information is displayed in reverse video on the title bars.

- Frequency Mode Title Bar-The current frequency mode (CW, Analog Sweep, Step Sweep, or Manual Sweep) appears on the left side of the bar. In an analog or step sweep mode, the type of sweep trigger (Auto, Extern, or Single) appears on the right side.
- Level Mode Title Bar-The current power level mode (Level or Level Sweep) appears on the left side of the bar. In a level sweep mode, the type of sweep trigger (Auto, External, or Single) appears on the right side of the bar.
- Modulation Title Bars-E ach type of signal modulation (AM, FM , Square Wave) has a separate title bar on the display.

Parameter Areas

The parameter areas show the frequency, power level, and modulation information for the current 681XXB setup.

- Frequency Parameters Area-The current CW frequency in GHz , or the start and stop frequencies of the current frequency sweep range in GHz are displayed in this area.
- Power Level Parameters Area-The current power level in dBm , or the start and stop levels of the current power level sweep range in dBm are displayed in this area.
- Modulation Status Areas-These areas display ON or OFF to indicate the status of signal modulation for the current setup.

Menu Labels

Each of the menu soft-keys, located below and to the right of the display, has a corresponding menu label area on the display. These labels identify the function of the soft-keys for the current menu display. In most cases, when a menu soft-key is pressed, its menu label changes appearance to visually show the On/Off condition.

Menu Keys

Window Display

A window display that overlays a portion of the current menu display is used to (1) show the parameter being edited; (2) display selection lists of preset frequencies, power levels, markers, etc.; (3) show the modulation and system configuration choices and current selections; or (4) show self-test error messages. A typical window display is shown on the left.

As shown in Figure 3-2, there are two types of menu keys that surround the data display-main menu keys and menu soft-keys. The main menu keys are positioned to the left of the data display. The menu soft-keys are located at the bottom and to the right of the data display.

Main Menu Keys

Each of the main menu keys, shown on the left, selects a main (top-level) menu display. These menus let you select the operating mode, operating parameters, and configuration of the instrument. A brief functional description of each main menu follows.

- CW/SWEEP SELECT-This menu lets you select between CW, Analog, Step, and Manual Sweep frequency modes.
- FREQUENCY CONTROL-In CW frequency mode, this menu lets you select the CW frequency parameter (F 0-F 9 or M0-M9) to use. In the Analog, Step, or Manual Sweep frequency mode, this menu lets you select the sweep range parameters (Full, F1-F2, F3-F4, F5-dF, or F6-dF) to use. In Anal og or Step Sweep frequency mode, the menu also lets you select up to 20 independent, pre-settable frequency markers.
- LEVEL/ALC SELECT-This menu lets you select power level and ALC modes (Level, Level Sweep, Level Offset, ALC on or off, internal or external ALC, ALC/attenuator decoupling, ALC slope, and user level flatness correction).
- LEVEL CONTROL—In Level mode, this menu lets you select the level parameter (LOL9) to use for a CW frequency or a frequency sweep. In the Level Sweep mode, this menu lets you select the power sweep range parameters to use.

MODULATION-This menu provides you with access to sub-menus that let you select the type of signal modulation (AM, FM, or Square Wave) and control the option settings for each type.

- SYSTEM-This menu provides you with access to sub-menus that let you (1) reset the instrument to factory-selected default values; (2) configure the front panel, rear panel, RF, and GPIB; (3) set incremental sizes for editing frequency, power level, and time parameters; (4) save or recall instrument setups; (5) disable front panel data display; and (6) perform instrument self-test.

Main Menu Key Cursor

With the exception of the SYSTEM key, when any main menu key is pressed, the main menu that is displayed contains a cursor positioned adjacent to the pressed key (Figure 3-2). The cursor is displayed on all sub-menus of the current menu until a different main menu key is pressed.

When the SYSTEM key is pressed, the System menu is displayed. The System menu and its submenus do not contain a main menu key cursor.

Menu Soft-Keys

As shown on the left, five menu soft-keys are located below the data display and five menu soft-keys are located to the right of the data display. In general, the menu soft-keys located below the data display select a sub-menu of the current main (top-level) menu display; the menu soft-keys located to the right of the data display either control a function on the current menu display or select an additional sub-menu. Menu labels that identify the current function of each soft-key are shown on the menu display adjacent to the soft-keys.

The value of a selected 681XXB parameter can be changed using the rotary data knob and/or keys of the data entry area. Each element of the data entry area is identified in Figure 3-3 and described in the following paragraphs.

Figure 3-3. Front Panel Data Entry Area

Cursor Control Key

In general, this diamond-shaped key controls the movement of the cursor on the display. When a parameter is opened for editing, a cursor appears under the open parameter. E ach time the <or >pad is pressed, the cursor moves left or right by one digit. The \wedge or \vee pad can then be used to increase or decrease the value of the parameter. The unit size of the increase or decrease that occurs each time the \wedge or v pad is pressed is determined by the cursor position.

In addition, when editing frequency, power level, and time parameters, the incremental size can be set to a specific value using a system configuration sub-menu. Once set and activated, each time the \wedge or v pad is pressed, the parameter's value increases or decreases by the set amount.

Rotary Data Knob

The rotary data knob can be used to change the value of a parameter that is open for editing. The cursor is moved under the open parameter using the <and > pads of the cursor control key. Then, by slowly turning the knob clockwise or counterclockwise the value of the parameter is increased or decreased by the unit size. The unit size is determined by the cursor placement. Turning the knob rapidly changes the value of the parameter in larger steps.
When editing frequency, power level, and time parameters, the incremental size can be set to a specific value using a system configuration sub-menu. Once set and activated, each time the knob is turned clockwise or counter-clockwise, the parameter's value increases or decreases by the set amount.

KEYPAD

The numeric keypad provides for entering frequency, power level, time, and number-of-steps parameters and GPIB address values. The "-" key functions as a "change sign" key during any keypad entry.

CLEAR ENTRY Key

When a parameter is open for editing, the CLEAR ENTRY key is used to clear the parameter entry.

BACK SPACE Key

The BACK SPACE key is used to correct keypad data entry errors by deleting the last number, "-", or decimal point entered.

Terminator Keys

The terminator keys are used to terminate keypad data entries and change the parameter values in memory. If the entered value is outside the allowable range of the open parameter, an error message will be displayed al ong with an audible "beep". The terminator keys are as follows:
$\mathrm{GHz} / \mathrm{Sec} / \mathrm{dBm}$
$\mathrm{MHz} / \mathrm{ms} / \mathrm{dB}$
kHz / us / STEPS
$\mathrm{Hz} / \mathrm{ns} /$ ADRS

Now that you have familiarized yourself with the layout of the sweep generator's front panel controls and data display, you are ready to begin operating the instrument. Begin by powering it up.

Powering Up	
the 681XXB	Connect the 681XXB to an ac power source by fol- lowing the procedure in the Installation chapter. This automatically places the instrument in opera- tion (front panel OPERATE LED on).
Start-Up	During power up, the start-up display (below) ap- pears on the data display. It provides you with the revision level of the installed firmware and informs Dou that instrument is Ioading programs. The start- up display remains displayed until the sweep gen- erator has loaded all programs.

```
                                    ANRITSU
        SYNTHESIZEI SWEEP GENERHTOR
        Firmbare Revision= X.SM
            Flease Nait...
        LOAIING PROGRAMS
    COPYRIGHT 1992. 1993. 1994 WILTRONCO.
```

Upon completion of power up, the 681XXB returns to the exact configuration it was in when last turned off.

Whenever the sweep generator is not being used, it should be left connected to the power source and placed in standby. Standby operation provides power to keep the internal time base at operating temperature. This assures specified frequency accuracy and stability when the 681XXB is place in operation.

NOTE

During standby operation, the fan runs continuously.

Press LINE to switch the 681XXB from OPERATE (green LED on) to STANDBY (orange LED on).

NOTE

When switching to operate from standby, allow at least a 30 -minute warmup before beginning sweep generator operations.

Self-Testing the 681XXB

The 681XXB firmware includes internal diagnostics that self-test the instrument. These self-test diagnostics perform a brief go/no-go test of most of the PCBs and other internal assemblies. If the sweep generator fails self-test, an error message is displayed on the data display. Error messages and descriptions are listed in the Operator Maintenance chapter of this manual.

CAUTION

During self-test with RF OUTPUT set to ON, the output power level is set to 0 dBm . Always disconnect sensitive equipment from the unit before performing self-test.

You can perform a self-test of the sweep generator at any time during normal operation. To perform a self-test from any menu, press SYSTEM. Then, when the System Menu (below) is displayed, press Selftest.

Resetting to Default Parameters

You can reset the 681XXB to the factory-selected default parameter values at any time during normal operation. The default parameters are shown in Table 3-1 on the following page.

NOTE

Resetting the instrument clears the setup presently in place. If these parameter values are needed for future testing, save them as a stored setup before resetting the sweep generator. (For information on saving/recalling instrument setups, refer to paragraph 3-14.)

To reset the sweep generator, press SYSTEM. When the System Menu (above) is displayed, press Reset.

Table 3-1. Reset (Default) Paramenters (1 of 2)

681XXB	FREQUENCY PARAMETERS (GHz)																				
NUMBER	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	M0	M1	M2	M3	M4	M5	M6	M7	M8	M9	$\Delta \mathrm{F}$
68137B	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68145B	3.5	2.2	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68147B	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	20.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68153B	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68155B	3.5	2.2	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68159B	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	26.5	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68163B	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68165B	3.5	2.2	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68169B	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	40.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68175B	3.5	2.2	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68177B	3.5	2.0	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	50.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68185B	3.5	2.2	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68187B	3.5	2.0	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	60.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68195B	3.5	2.2	65.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	65.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0
68197B	3.5	2.0	65.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	3.5	2.0	65.0	2.0	5.0	8.0	11.0	14.0	17.0	20.0	1.0

681XXB	POWER LEVEL PARAMETERS (dBm)									
NUMBER	LO	L1	L2	L3	L4	L5	L6	L7	L8	L9
68137B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68145B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68147B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68153B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68155B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68159B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68163B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68165B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68169B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0

Table 3-1. Reset (Default) Paramenters (2 of 2)

$\begin{aligned} & \text { 681XXB } \\ & \text { MODEL } \\ & \text { NUMBER } \end{aligned}$	POWER LEVEL PARAMETERS (dBm)									
	LO	L1	L2	L3	L4	L5	L6	L7	L8	L9
68175B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68177B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68185B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68187B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68195B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0
68197B	+1.0	0.0	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	-7.0	-8.0

$\begin{array}{\|c} \text { 681XXB } \\ \text { MODEL } \\ \text { NUMBER } \end{array}$	SWEEP TIME	STEP SWEEP		LEVEL SWEEP		LEVEL OFFSET
		DWELL TIME	NUMBER OF STEPS	DWELL TIME	NUMBER OF STEPS	
68137B	50 ms	1 ms	50	50 ms	50	0.0 dB
68145B	50 ms	1 ms	50	50 ms	50	0.0 dB
68147B	50 ms	1 ms	50	50 ms	50	0.0 dB
68153B	50 ms	1 ms	50	50 ms	50	0.0 dB
68155B	50 ms	1 ms	50	50 ms	50	0.0 dB
68159B	50 ms	1 ms	50	50 ms	50	0.0 dB
68163B	50 ms	1 ms	50	50 ms	50	0.0 dB
68165B	50 ms	1 ms	50	50 ms	50	0.0 dB
68169B	50 ms	1 ms	50	50 ms	50	0.0 dB
68175B	50 ms	1 ms	50	50 ms	50	0.0 dB
68177B	50 ms	1 ms	50	50 ms	50	0.0 dB
68185B	50 ms	1 ms	50	50 ms	50	0.0 dB
68187B	50 ms	1 ms	50	50 ms	50	0.0 dB
68195B	50 ms	1 ms	50	50 ms	50	0.0 dB
68197B	50 ms	1 ms	50	50 ms	50	0.0 dB

3-6
 ENTERING DATA

Before proceeding to the various modes of sweep generator operation, you need to know how to enter data from the front panel. Entering data refers to changing a parameter's value by editing its current value or entering a new value to replace the current value. The following instructions describe how to (1) open a parameter, (2) edit its current value, and (3) enter a new value.

A typical 681XXB menu display (below) is used throughout the data entry instructions. At this menu display, you can edit both the CW frequency and the output power level parameters.

If you wish to follow al ong on your synthesizer, you can obtain this same menu display by resetting your instrument (press SYSTEM, then press Reset).

Opening the In order for the value of a parameter to be changed, Parameter
the parameter must first be opened.

To open the frequency parameter from the above menu, press Edit F1. The menu display now changes to show that the menu soft-key Edit F1 has been pressed and that the frequency parameter has been opened. An open parameter is indicated by placing it in a window with a movable cursor under its digits.

Only one parameter can be open at a time. If you press Edit L1 then the frequency parameter will close and the power level parameter will open.

Editing the Current Value

To change the current value of a parameter by editing, you can use either the cursor control key or the rotary data knob.

Using the Cursor Control Key

Using the <and >pads of the cursor control key, move the cursor under the digit where you want to begin editing. Then increase or decrease the value of the parameter using the \wedge or v pad of the cursor control key. The unit size of the increase or decrease that occurs each time the \wedge or \wedge pad is pressed is determined by the cursor position.

Using the Rotary Data Knob

You can also increase or decrease the value of the parameter using the rotary data knob. Once you have positioned the cursor under the digit where you want to begin editing, slowly turn the knob clockwise or counter-clockwise to increase or decrease the value of the parameter by the unit size. Turning the knob rapidly changes the value of the parameter in larger steps.

Using a Set Increment

When editing frequency, power level, and time parameters, you can increase or decrease the parameter's value by a set amount each time the \wedge or v pad is pressed or the rotary data knob is turned clockwise or counter-clockwise. F or instructions on setting the increment size, refer to the System Configuration section of this chapter.

Now, try changing the current value of the CW frequency displayed on your synthesizer from 2.0 GHz to 6.395 GHz . Use both the cursor control key's ^ and v pads and the rotary data knob to make the value changes. When you are finished, your menu display should look like the example below.

Entering a New Value

To close the open parameter when you are finished editing, press Edit F1 or make another menu selection.

To change the current value of a parameter by entering a new value for the parameter, use the data entry keypad and termination keys.

As soon as you press one of the keys on the data entry keypad, the current parameter display clears for entry of a new value. Enter the new value for the parameter, then press the appropriate terminator key to store it in memory. If the entered value is outside the allowable range of the open parameter, the entry is not accepted and the previous value for the parameter is displayed.

NOTE

A frequency entry may beterminated in $\mathrm{GHz}, \mathrm{MHz}, \mathrm{kHz}$, or Hz ; however, it is always displayed on the data display in GHz. A time entry may be terminated in $\mathrm{Sec}, \mathrm{ms}, \mu \mathrm{s}$, or ns; however it is always displayed on the data display in Sec.

If you make an error during data entry, either (1) press BACK SPACE to delete the entry one character at a time starting from the last character entered, or (2) delete the entire entry by pressing CLEAR ENTRY. Then, reenter the correct value.

Now, try entering a new value for the CW frequency displayed on your synthesizer using the data entry keypad and termination keys.

To close the open parameter when you are finished entering data, press Edit F1 or make another menu selection.

One of the sweep generator's major functions is to produce discrete CW frequencies across the frequency range of the instrument. The following paragraphs describe how to place the 681XXB in the CW frequency mode, select a CW frequency and power level for output, and activate the CW ramp. Use the CW F requency M ode menu map (Chapter 4, Figure 4-2) to follow the menu sequences.

Selecting CW To place the 681XXB in the CW frequency mode, Mode press the main menu key

CW/SWEEP
SELECT
At the resulting menu display, press CW . The CW Menu (below) is displayed.

NOTE

When the sweep generator is reset, it automatically comes up operating in the CW frequency mode.

Selecting a CW Frequency

There are several ways to select a CW frequency for output. You can (1) edit the current frequency, (2) enter a new frequency, or (3) select one of the 20 preset frequency parameters.

Editing the Current Frequency

Press Edit F1 to open the frequency parameter, then edit the current CW frequency using the cursor control key or the rotary data knob. To close the open frequency parameter, press Edit F1 or make another menu selection.

Entering a New Frequency

Press Edit F1 to open the frequency parameter, then enter the new CW frequency using the keypad and appropriate terminator key. To close the open frequency parameter, press Edit F1 or make another menu selection.

Selecting a Preset Frequency

To select one of the preset frequencies for output, press the main menu key

FREQUENCY CONTROL

The CW Frequency Control menu (below) is displayed. This menu lets you (1) select preset frequencies F0, F1, F2, M1, or M2 for output, (2) go to the frequency list menu, or (3) go to the tagged frequencies menu.

Frequency List-To go to the F requency List menu (below), press Freqs List. This menu lets you tag,edit, or output a frequency from the list.

Use the cursor control key to select a frequency from the frequency list. The selected frequency is highlighted in reverse video and displayed in full below the frequency list.

Press Tag to mark a selected frequency (place an \mathbf{F} in front of it). If the frequency is already tagged, pressing Tag will untag it (remove the F). Tagging selected frequencies lets you quickly switch between them using the scan keys of the Tagged Frequencies menu.
Press Edit to edit the selected frequency or enter a new frequency.

Press Output Freq to output the selected frequency. This frequency is output until you select another frequency from the list and press Output Freq. On the frequency list, the output frequency selection is marked by a black square or, if tagged, an \mathbf{F} highlighted in reverse video.
When you are finished, press Previous Menu to return to the CW Frequency Control menu display.

Scanning Tagged Frequencies-To go to the Tagged Frequencies menu (below) from the CW Frequency Control menu, press Tag Freq Menu .

This menu lets you select the tagged frequencies for output using the Scan Up and Scan Dn keys.

Return to the CW Frequency Control menu by pressing Previous Menu.

Selecting a Power Level

While in the CW frequency mode, you can edit the current CW frequency output power level or enter a new output power level.

Editing the Current Power Level

Press Edit L1 to open the power level parameter, then edit the current power level using the cursor control key or rotary data knob. To close the open power level parameter, press Edit L1 or make another menu selection.

Entering a New Power Level

Press Edit L1 to open the power level parameter, then enter the new power level using the keypad and appropriate terminator key. To close the open power level parameter, press Edit L1 or make another menu selection.

NOTE

You can also select any of the preset power levels or a power level sweep for a CW frequency. For instructions, refer to the Fixed Power Level Operation and Power Level Sweep Operation sections of this chapter.

CW Ramp

When active, the sweep generator's CW ramp provides a repetitive 0 V to 10 V ramp output to the rear panel HORIZ OUT BNC connector and AUX I/O connector. The CW ramp is used to drive a scalar anaIyzer display.

To go to the CW Ramp menu (below) from the CW menu, press CW Ramp Menu .

This menu lets you set the ramp speed and turn the CW ramp on/off.

To set ramp speed, press Sweep Time . The sweep time parameter opens for editing. Edit the current sweep time using the cursor control key or rotary data knob or enter a new sweep time using the key pad and appropriate termination key. The sweep time entered must be in the range of 30 ms to 99 sec . To close the open sweep time parameter when you are done, press Sweep Time or make another menu selection.

Press CW Ramp to turn the CW ramp on. While the CW ramp is on, the message CW Ramp appears on the right side of frequency title bar on all CW menus.

Press Previous Menu to return to the CW menu.

The sweep generator can generate broad (full range) and narrow band sweeps across the frequency range of the instrument. The 681XXB has three sweep frequency modes-analog sweep, step sweep, and manual sweep. The following paragraphs describe how to select each sweep frequency mode, a sweep range, an output power level, a sweep trigger, and frequency markers. Use the Analog Sweep, Step Sweep, and Manual Sweep Frequency M ode menu maps (Chapter 4, Figures 4-3, $4-4$, and 4-5) to follow the menu sequences.

Analog Sweep Mode

NOTE

In 681X5B models performing analog sweeps between 0.5 and 2.2 GHz, the sweep is phase-lock corrected as follows. For sweep widths of $>25 \mathrm{MHz}$, phase-lock correction occurs at both the start and stop frequencies and at each bandswitch point. For sweep widths of $\leq 25 \mathrm{MHz}$, only the center frequency of the sweep is phase-lock cor-

Selecting In analog sweep frequency mode, the sweep generator's output frequency is swept between selected start and stop frequencies. When the sweep width is $>100 \mathrm{MHz}$, the sweep is phase-lock corrected at both the start and stop frequencies and at each bandswitch point. When the sweep width is $\leq 100 \mathrm{MHz}$, only the center frequency of the sweep is phase-lock corrected.

To place the 681XXB in analog sweep frequency mode, press the main menu key

CW/SWEEP
SELECT
At the resulting menu display, press Analog. The Analog Sweep Menu (below) is then displayed.

This menu lets you perform the following:

- Select a sweep range (edit the sweep start and stop frequency parameters).
- Go to the sweep ramp menu (set the sweep time and select a sweep trigger).
- Select an output power level for the sweep.
- Go to the alternate sweep menu.

Setting the Analog Sweep Time

The duration of the analog sweep can be set for any time in the range of 30 ms to 99 sec . The sweep time parameter is set from the sweep ramp menu.

To go to the Anal og Sweep Ramp menu (below) from the Analog Sweep menu, press Sweep Ramp .

This menu lets you set the sweep time and go to the trigger menu.

To open the sweep time parameter for editing, press Sweep Time. Edit the current sweep time using the cursor control key or the rotary data knob or enter a new sweep time using the key pad and appropriate termination key. To close the open sweep time parameter once you have set the desired time, press Sweep Time or make another menu selection.

To go to the Analog Sweep Trigger menu from this menu, press Trigger Menu . Sweep trigger is described on the next page.

Press Previous Menu to return to the Analog Sweep menu.

Selecting a
 Sweep
 Trigger

The 681XXB provides sweep triggering for analog frequency sweep, step frequency sweep, and CW power sweep. The sweep generator has three modes of sweep triggering, each selectable from the trigger menu. The following is a description of each mode.

- Auto (Automatic)-The sweep continually sweeps from its start frequency or power level to its stop frequency or power level with optimal retrace time.
- External-The sweep recurs when triggered by an external TTL-compatible clock pulse to the rear panel AUX I/O connector.
- Single-A single sweep starts when the trigger key is pressed. If a sweep is in progress when the key is pressed, it aborts and resets.

To go to the Analog Sweep Trigger menu (below) from the Analog Sweep Ramp menu, press Trigger Menu .

F2	Auto
Level	Single
L1 + 0 . 016 dEm	
Aly	Previous Meru.
CW Mnalog Step Manual	

To select a sweep trigger mode, press its menu softkey. A message showing the sweep trigger mode selected appears on the right side of frequency title bar. When you are finished, press Previous Menu to return to the Analog Sweep Ramp menu.

If you select the single sweep trigger mode, the menu display adds the menu soft-key Trig. Pressing Trig starts a single sweep. If a single sweep is in progress, pressing Trig causes the sweep to abort and reset.

Selecting Step Sweep Mode

In step sweep frequency mode, the output frequency changes in discrete, synthesized steps between selected start and stop frequencies. Step sweeps can be from a high frequency to a low frequency and vice versa. The step size or number of steps between the start and stop frequencies and the dwell time-perstep are controllable from a step sweep menu.

To place the 681XXB in step sweep frequency mode, press the main menu key

CW/SWEEP
SELECT
At the resulting menu display, press Step. The Step Sweep Menu (below) is then displayed.

This menu lets you perform the following:

- Select a sweep range (edit the sweep start and stop frequency parameters).
- Go to the sweep ramp menu (set the dwell time-per-step, the step size or number of steps, and select a sweep trigger).
- Select an output power level for the sweep.
- Go to the alternate sweep menu.

Setting Step Size and Dwell Time

RANGE

This error message is displayed when (1) the step size value entered is greater than the sweep range or (2) the number of steps entered results in a step size of less than 1 kHz (0.1 Hz with Option 11). Entering a valid step size will clear the error.

There are two ways to set the size of each step of the step sweep-set the step size or set the number of steps. The step size range is 1 kHz to the full frequency range of the sweep generator $(0.1 \mathrm{~Hz}$ to full frequency range with Option 11); the number of steps range is 1 to 10,000 . The dwell time-per-step of the step sweep can be set for any time in the range of 1 ms to 99 sec . The step size and dwell time-per-step parameters are set from the step sweep ramp menu.

To go to the Step Sweep Ramp menu (below) from the Step Sweep menu, press Sweep Ramp .

This menu lets you set the dwell time, the step size, the number of steps, and go to the trigger menu.

Press Dwell Time to open the dwell time-per-step parameter.

Press Step Size to open the step size parameter.
Press Num of Steps to open the number of steps parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or the rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or make another menu selection.

To go to the Step Sweep Trigger menu from this menu, press Trigger Menu. The trigger menu lets you select a sweep trigger (previously described on page 3-27).

Press Previous Menu to return to the Step Sweep menu.

Selecting
Manual
Sweep Mode

In manual sweep frequency mode, the output frequency can be manually tuned in phase-locked steps between the selected start and stop frequencies using the rotary data knob. As the knob is turned, the current output frequency is displayed on the data display as Fm. The step size or number of steps between the start and stop frequencies are controllable from the manual sweep menu.

To place the 681XXB in manual sweep frequency mode, press the main menu key

CW/SWEEP

SELECT

At the resulting menu display, press Manual. The Manual Sweep menu (below) is then displayed.

This menu lets you perform the following:

- Select a sweep range (edit the start and stop frequency parameters).
- Set the step size or number of steps (previously described on page 3-29).

Selecting a Sweep Range

Selecting a sweep range involves choosing a start and a stop frequency for the frequency sweep. The sweep range selection process is identical for all sweep frequency modes (analog, step, and manual). There are several ways you can select a sweep range, including:

- Editing the current start and stop frequency parameter values.
- Entering new start and stop frequency parameter values.
- Selecting one of the preset sweep range parameters (F1-F2, F3-F4, F5-dF, or F6-dF).

Editing the Current Start / Stop Frequencies

To edit the current sweep range start by opening either the start or stop frequency parameter (in the display above, Edit F1 opens the start frequency parameter; Edit F2 opens the stop frequency parameter).

Edit the open frequency parameter using the cursor control key or the rotary data knob. When you are finished, close the open parameter by pressing its menu edit soft-key or by making another menu selection.

Entering New Start / Stop Frequencies

To enter a new sweep range start by opening either the start or stop frequency parameter (press Edit F1 or Edit F2).
Enter a new frequency using the keypad and appropriate terminator key. When you are finished, close the open parameter by pressing its menu edit softkey or by making another menu selection.

SWEEP FREQUENCY
 OPERATION

Selecting a Preset Sweep R ange

There are four preset sweep range parameters, selectable in the analog sweep, step sweep, and manual sweep frequency modes. The following is a description of each preset sweep range.

- F1-F2-provides a frequency sweep between the start frequency, F1, and the stop frequency, F2.
- F3-F4-provides a frequency sweep between the start frequency, F3, and the stop frequency, F4.
- F5-dF-provides a symmetrical frequency sweep about the center frequency, F5. The sweep width is determined by the dF frequency parameter.
- F6-dF-provides a symmetrical frequency sweep about the center frequency, F6. The sweep width is determined by the dF frequency parameter.
To select one of the preset sweep ranges from any sweep frequency mode menu, press the main menu key

FREQUENCY CONTROL

The Sweep F requency Control menu (below) is displayed.

This menu lets you perform the following:

- Select a full range sweep (F min-F max) or one of the preset sweep ranges for the sweep frequency mode.
- Select the frequency parameters for each preset sweep range.
- Select an output power level for the sweep.
- Go to the marker list menu.

Setting a Preset Sweep Range-At the menu, select the sweep range (F1-F2, F3-F4, F5-dF, or F6-dF) that you wish to set. The menu then displays the current frequency parameters for the selected sweep range. Now, use the menu edit soft-keys to open the frequency parameters for editing.
Edit the current frequency parameters or enter new frequency parameter values for the sweep range. To close the open frequency parameter when you are finished, press its menu edit soft-key or make another menu selection.
You can set all the preset sweep ranges in this manner.

Selecting a Power Level

While at the Sweep F requency Control menu, you can edit the current output power level or enter a new output power level for the frequency sweep.

Editing the Current Power Level

Press Edit L1 to open the power level parameter, then edit the current power level using the cursor control key or rotary data knob. To close the open power level parameter, press Edit L1 or make another menu selection.

Entering a New Power Level

Press Edit L1 to open the power level parameter, then enter the new power level using the keypad and appropriate terminator key. To close the open power level parameter, press Edit L1 or make another menu selection.

NOTE

You can also select any of the preset power levels for a frequency sweep or a power level step for analog and step sweeps. For instructions, refer to the Fixed Power Level Operation and Power Level Sweep Operation sections of this chapter.

Frequency Markers

The sweep generator provides up to 20 independent, pre-settable markers, F 0-F9 and M 0-M9, that can be used in the analog and step sweep frequency modes for precise frequency identification. Marker frequency accuracy is the same as sweep frequency accuracy. The markers are visible on a CRT display.

The 681XXB generates two types of markers.

- Video Marker-produces a pulse on a CRT display at each marker frequency. The video marker is either a +5 V or a -5 V pulse at the rear panel. The polarity of the video marker pulse is selectable from a system configuration menu.
- Intensity Marker-produces an intensified dot on a CRT display at each marker frequency. Intensity markers are only available in the anal og sweep frequency mode and are obtained from a momentary dwell during the sweep at each marker frequency.

To output markers during a sweep you must first select (tag) the marker frequencies from the Marker List menu, then turn on the marker output.

To go to the Marker List menu from an analog or step sweep frequency menu, press

FREQUENCY CONTROL

The Sweep F requency Control menu (below) is displayed.

To go to the Marker List menu from this menu, press Marker Lis t . The Marker List menu, shown on the next page, is displayed. This menu lets you tag or edit marker list frequencies and turn the markers on/off.

Use the cursor control key to select a frequency parameter from the marker list. The selected frequency parameter is highlighted in reverse video and displayed in full below the marker list.

Editing a Marker List Frequency

If you want to change a selected marker list frequency parameter's value, press Edit to open the frequency parameter, then edit the current frequency or enter a new frequency.

Tagging a Marker List Frequency

Only frequencies on the marker list that have been tagged can be output as markers during a sweep. Press Tag to tag a selected frequency parameter (place an \mathbf{m} in front of it). If a frequency parameter is already tagged, pressing Tag will untag it (remove the m).

Activating Markers

The soft-keys Video Markers and Intensity Markers toggle the markers on and off.
Video Markers-To output the tagged marker frequencies as video markers during an analog or step sweep, press Video Markers. Video markers will be displayed on the CRT for all tagged marker frequencies that are within the sweep frequency range.
Intensity Markers-(only availablein analog sweep frequency mode) To output the tagged marker frequencies as intensity markers during an analog sweep, press Intensity Markers. Intensity markers will be displayed on the CRT for all tagged marker frequencies that are within the analog sweep frequency range.
Press Previous Menu to return to the Sweep Frequency Control menu.

Selecting Alternate Sweep Mode

In alternate sweep frequency mode, the sweep generator's output frequency sweeps alternately between any two sweep ranges in analog sweep or any two sweep ranges in step sweep. The process of selecting and activating the alternate sweep is identical for both analog and step sweep frequency modes.

To select the alternate sweep mode for analog sweeps, start with the Analog Sweep Menu display; to select the alternate sweep mode for step sweeps, start with the Step Sweep Menu display (below).

To go to the Alternate Sweep menu (below) from the Step Sweep menu, press Alt Swp Menu .

This menu lets you perform the following:

- Turn the alternate sweep mode on/off.
- Go to the alternate range menu to select a sweep range for the alternate sweep.
- Go to the alternate level menu to select a power level for the alternate sweep.

Activating the Alternate Sweep

The Alternate Sweep menu soft-key Alt Sweep toggles the alternate sweep mode on and off.
Press Alt Sweep to turn on the alternate sweep mode. Notice that the Alternate Sweep menu (on the following page) changes to show that the alternate sweep is now active.

Now, press Previous Menu to return to the Step Sweep Menu display (or the Analog Sweep Menu display if operating in analog sweep frequency mode).
Notice the changes to the Step Sweep Menu display (below). These changes indicate that the alternate sweep frequency mode is active.

Now, press Alt Swp Menu to return to the Alternate Sweep menu.

Selecting an Alternate Sweep Range

To go to the Alternate Range menu (below) from the Alternate Sweep menu, press Alt Range.

Select the alternate sweep range (Full, F1-F2, F3-F4, $\mathrm{F} 5-\mathrm{dF}$, or $\mathrm{F} 6-\mathrm{dF}$). The menu then displays the current frequency parameters for the selected sweep range. If you wish to change a frequency parameter, use the menu edit soft-key to open the parameter, then edit it.

When you are done selecting the alternate sweep range, press Previous Menu to return to the Alternate Sweep menu.

Selecting an Alternate Sweep Power Level
To go to the Alternate Level menu (below) from the Alternate Sweep menu, press Alt Level.

Select the power level for the alternate sweep range (LO, L1, L2, L3, or L4). The menu then displays the current level parameter for the selected power level. If you wish to change the level, use the menu edit soft-key to open the parameter, then edit it.

A menu edit soft-key is also provided to let you change the power level of the main sweep.

Performing alternate sweeps using power levels that cross step attenuator switch points can cause excessive wear on the switches and reduce the life expectancy of the step attenuator.

When you are done selecting the power level for the alternate sweep range and editing the power level of the main sweep, press Previous Menu to return to the Alternate Sweep menu.

3-9
 FIXED POWER LEVEL OPERATION

The sweep generator provides leveled output power over a maximum range of up to 28 dB (up to 131 dB with Option 2) for CW and sweep frequency operations. Units with Option 15A provide leveled output power over a maximum range of up to 22 dB (up to 125 dB with Option 2). The following paragraphs describe how to place the 681XXB in fixed (non-swept) power level mode, select a power level for output, and activate level offset. Use the Fixed (Non-Swept) Power Level Mode menu map (Chapter 4, Figure 4-6) to follow the menu sequences.

Selecting Fixed Power Level Mode

Selecting a Power Level

To place the 681XXB in a fixed power level mode from a CW or sweep (analog, step, or manual) frequency menu, press the main menu key

LEVEL/ALC
SELECT
At the resulting menu display, press Level. The Level Menu (below) is displayed.

This menu lets you perform the following:

- Edit the power level parameter.
- Edit the level offset parameter.
- Turn level offset on/off.

There are several ways to select a power level for output. You can (1) edit the current power level, (2) enter a new power level, or (3) select one of the 10 preset power level parameters.

Editing the Current Power Level

Press Edit L1 to open the power level parameter, then edit the current power level using the cursor control key or the rotary data knob. To close the open power level parameter, press Edit L1 or make another menu selection.

Entering a New Power Level

Press Edit L1 to open the power level parameter, then enter the new power level using the keypad
and appropriate terminator key. To close the open power level parameter, press Edit L1 or make another menu selection.

Selecting a Preset Power Level

To select one of the preset power levels for output, press the main menu key

LEVEL CONTROL

The Level Control menu (below) is displayed.

This menu lets you perform the following:

- Select preset power levels LO, L1, L2, L3, or L4 for output.
- Go to the Level List menu.
- Go to the Tagged Levels menu.

Level List- To go to the Level List menu (below), press Level List.

This menu lets you select a power level from the list to tag, edit, or output.
Use the cursor control key to select a power level from the level list. The selected power level is highlighted in reverse video and displayed in full below the level list.

Press Tag to mark a selected power level (place an L in front of it). If a power level is already tagged, pressing Tag will untag it (remove the L). Tagging selected power levels lets you quickly switch between them using the scan keys of the Tagged Levels menu.

Press Edit to edit the selected power level or enter a new power level.

Press Output Level to output the selected level. This power level is output until you select another level from the list and press Output Level. On the level list, the output power level selection is marked by a black square or, if tagged, an \mathbf{L} highlighted in reverse video.

When you are finished, press Previous Menu to return to the Level Control menu display.
Scanning Tagged Levels-To go to the Tagged Levels menu (shown below) from the Level Control menu, press Tag Lvl Menu.

This menu lets you select the tagged power levels for output using the Scan Up and Scan Dn keys.
Return to the Level Control menu display by pressing Previous Menu.

Level Offset

OFFSET

When Offset is selected ON, this status message is displayed on all menu displays to remind the operator that a constant (offset) has been applied to the displayed power level.

Level offset lets you compensate for a device on the sweep generator's output that alters the RF output power level at the point of interest. For example, the power level at the test device may be less or more than the displayed power level because of the loss through an external transmission line or the gain of an amplifier located between the 681XXB RF output and the test device. Using the level offset function, you can apply a constant to the displayed power level that compensates for this loss or gain. The displayed power level will then reflect the actual power level at the test device.

To enter an offset value and apply it to the displayed power level, go to the Level Menu. Then press Edit Offset. As shown in the following menu, this opens the offset parameter for editing.

Edit the current offset value using the cursor control key or rotary data knob or enter a new offset value using the keypad and appropriate terminator key. To close the open offset parameter when you are done, press Edit Offset or make another menu selection.

Press Offset to apply the offset to the displayed power level. In this example, $\mathrm{a}+2.00 \mathrm{~dB}$ offset is applied to L1. L1 then displays a power level of +2.00 dBm .

The sweep generator provides leveled output power sweeps at CW frequencies and in conjunction with frequency sweeps (analog and step). Power level sweeps can be from a high level to a low level or vice versa. The following paragraphs provide descriptions and operating instructions for the CW power sweep mode and the sweep frequency/ step power modes. Use the CW Power Sweep M ode and Sweep Fre quency/Step Power Mode menu maps (Chapter 4, Figures 4-7 and 4-8) to follow the menu sequences.

CAUTION
Performing power level sweeps that cross step attenuator switch points can cause excessive wear on the switches and reduce the life expectancy of the step attenuator.

Selecting CW Power Sweep Mode

In the CW power sweep mode, output power steps between any two power levels at a single CW frequency. Menus provided let you set or select the sweep range, the step size, the dwell time-per-step, and the sweep trigger.

To place the 681XXB in a CW power sweep mode from a CW frequency menu, press the main menu key

LEVEL/ALC
SELECT
At the resulting menu display, press Lvl Swp. The CW Level Sweep Menu (below) is displayed.

This menu lets you perform the following:

- Select a power level sweep range (edit the sweep start and stop power level parameters).
- Go to the sweep ramp menu (set the dwell time-per-step, the step size or number of steps, and select a sweep trigger).

POWER LEVEL SWEEP OPERATION

Setting CW Power Sweep Step Size and Dwell Time

There are two ways to set the size of each step of the CW power sweep-set the step size or set the number of steps. The step size range is 0.01 dB to the full power range of the synthesizer; the number of steps range is 1 to 10,000 . The dwell time-perstep of the CW power sweep can be set for any time in the range of 1 ms to 99 sec . The step size and dwell time-per-step are set from the CW level sweep ramp menu.

To go to the CW Level Sweep Ramp menu from the CW Level Sweep menu, press Sweep Ramp.

This menu lets you set the dwell time, the step size, the number of steps, and go to the trigger menu.

Press Dwell Time to open the dwell time-per-step parameter.

Press Step Size to open the step size parameter.
Press Num of Steps to open the number of steps parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

To go to the CW Level Sweep Trigger menu from this menu, press Trigger Menu . The trigger menu lets you select a CW power sweep trigger.

Press Previous Menu to return to the CW Level Sweep menu.

Selecting a CW Power Sweep Trigger

There are three modes of triggering provided for the CW power sweep-automatic, external, and single. The sweep trigger is selectable from the CW Level Sweep Trigger menu. The following is a description of each trigger mode.

- Auto (Automatic)-The CW power sweep continually sweeps from its start power level to its stop power level with optimal retrace time.
- External-The CW power sweep recurs when triggered by an external TTL-compatible clock pulse to the rear panel AUX I/O connector.
- Single-A single CW power sweep starts when the trigger key is pressed. If a sweep is in progress when the key is pressed, it aborts and resets.

To go to the CW Level Sweep Trigger menu from the CW Level Sweep Ramp menu, press Trigger Menu .

To select a CW power sweep trigger mode, press its menu soft-key. A message showing the CW power sweep trigger mode selected appears on the right side of the level mode title bar .

If you select the single sweep trigger mode, the menu display changes, adding the menu soft-key labeled Trig. Pressing Trig starts a single CW power sweep. If a single CW power sweep is in progress, pressing Trig causes the sweep to abort and reset.

Press Previous Menu to return to the CW Level Sweep Ramp menu.

Selecting a Power Level Sweep Range

Selecting a power level sweep range consists of choosing a start and stop level for the power level sweep. The power level sweep range selection process is identical for all power level sweep modes-CW power sweep, analog sweep frequency/step power, and step sweep frequency/step power. You can select a power level sweep range as follows:

- Edit the current start and stop power level parameter values.
- Enter new start and stop power level parameter values.
- Select one of the preset power level sweep range parameters (L1-L2, L3-L4, L5-L6, L7-L8, or L9-LO).

Level Lul Sup FLC Modelill Lagel User Cal
Editing the Current Start / Stop Power Levels
To edit the current power level sweep range, start by opening either the start or stop power level parameter (in the display above, Edit L1 opens the start power level parameter; Edit L2 opens the stop power level parameter).

Edit the open power level parameter using the cursor control key or the rotary data knob. When you are finished, close the open parameter by pressing its menu edit soft-key or by making another menu selection.

Entering New Start / Stop Power Levels

To enter a new power level sweep range start by opening either the start or stop power level parameters (press Edit L1 or Edit L2).
Enter a new power level using the keypad and appropriate terminator key. When you are finished, close the open parameter by pressing its menu edit soft-key or by making another menu selection.

Selecting a Preset Power Level Sweep Range
There are five preset power level sweep range parameters selectable in the power level sweep modes. These preset power level sweep range parameters are L1-L2, L3-L4, L5-L6, L7-L8, and L9-L0.
To select one of the preset power level sweep ranges from a Level Sweep menu, press the main menu key

LEVEL
 CONTROL

The Level Sweep Control menu (below) is displayed.

CW				$\underset{\mathrm{Ld}}{\mathrm{Edit}}$
				$\begin{gathered} \mathrm{Edit} \\ \mathrm{Li} \\ \hline 1 \end{gathered}$
L1-L2	L3-L4	L5-L6	L7-L8	L9-L61

In addition to letting you select one of the preset sweep ranges for the power level sweep, this menu lets you set the start and stop power level parameters for each preset sweep range.

Setting a Preset Power Level Sweep Range-At the Level Sweep Control menu, select the power level sweep range (L1-L2, L3-L4, L5-L6, L7-L8, or L9-LO) that you wish to set. The menu then displays the current power level parameters for the selected power level sweep range. Now, use the menu edit soft-keys to open the power level parameters for editing.

Edit the current power level parameter values or enter new power level parameter values for the power level sweep range. To close the open power level parameter when you are finished, press its menu edit soft-key or make another menu selection.

You can set all the preset power level sweep ranges in this manner.

Selecting a Sweep Fre quency / Step Power Mode

In analog sweep frequency/step power mode or step sweep frequency/step power mode, a power level step occurs after each frequency sweep. The power level remains constant for the length of time required to complete each frequency sweep. Menus provided let you control the power level sweep range and step size.

To select an analog sweep frequency/step power mode, start with an analog sweep menu display; to select a step sweep frequency/step power mode, start with a step sweep menu display. Then press the main menu key

LEVEL/ALC

 SELECTAt the resulting menu display, press Lvl Swp. The Level Sweep Menu is displayed.

This menu lets you perform the following:

- Select a power level sweep range (edit the sweep start and stop power level parameters).
- Go to the sweep ramp menu (set the step size or number of steps).

Setting Power Level Step
 Size

There are two ways to set the step size of the power level step that occurs after each frequency sweep-set the step size or set the number of steps. The step size range is 0.01 dB to the full power range of the synthesizer; the number of steps range is 1 to 10,000 . The power level step size is set from the level sweep ramp menu.

To go to the Level Sweep Ramp menu from the Level Sweep menu, press Sweep Ramp.

This menu lets you set the step size and the number of steps.

Press Step Size to open the step size parameter.
Press Num of Steps to open the number of steps parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the keypad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

Press Previous Menu to return to the Level Sweep menu.

3-11 leveling OPERATIONS

The 681XXB generates leveled output power over a maximum range of up to 28 dB (up to 131 dB with Option 2). Instruments with Option 15A provide leveled output power over a maximum range of up to 22 dB (up to 125 dB with Option 2). An automatic level control (ALC) system controls the amplitude and power level of the RF output. The operator can select the ALC mode of operation-internal, external (detector or power meter), or fixed gain (ALC off). In addition, the 681 XXB provides (1) an ALC power slope function that provides compensation for high frequency system or cable losses, (2) a decouple function that allows decoupling of the step attenuator (if equipped) from the ALC system, and (3) a user level (flatness correction) calibration function that provides for calibrating out path variations with frequency in a test setup.

The following paragraphs provide descriptions and operating instructions for the power leveling modes and functions. Use the Leveling M odes menu map (Chapter 4, Figure 4-9) to follow the menu sequences.

Selecting a Leveling Mode

The ALC system is a feedback control system, in which the output power is measured at a detector and compared with the expected power level. If the
output and desired power levels do not equal, the ALC adjusts the power output until they do. The feedback signal can be provided by either the internal detector or an external detector or power meter. Alternatively, the output power can be set to a fixed level without using the normal feedback (ALC off). The ALC mode menu lets you make the selection of a leveling mode.

To go to the ALC M ode menu, first press the main menu key

LEVEL/ALC SELECT

At the Level/ALC Select Menu display, press ALC Mode . The ALC Mode Menu (below) is displayed.

Level Lul Sup ALC Modehc Loop User Cal

The ALC M ode menu lets you perform the following:

- Go to the leveling menu (select the ALC mode of operation).
- Go to the attenuation menu (decouple the attenuator, if equipped, from the ALC system and set the power level and attenuation).
- Select either the front panel or rear panel external ALC input.

Internal Leveling

This is the normal (default) leveling mode. Output power is sensed by the internal detector in the 681XXB. The detector output signal is fed back to the ALC circuitry to adjust the output power level. Internal ALC is selected from the leveling menu.

To go to the Leveling Menu from the ALC M ode menu, press Leveling Menu . The Leveling Menu (below) is displayed.

To select internal ALC, press Internal.
Pressing one of the other leveling menu soft-keys External Detector, Power Meter, or Fixed Gain will turn off internal leveling.
Press Previous Menu to return to the ALC Mode menu.

External Leveling

In external leveling, the output power from the 681 XXB is detected by an external detector or power meter. The signal from the detector or power meter is returned to the ALC circuitry. The ALC adjusts the output power to keep the power level constant at the point of detection. The external ALC source input is selected from the leveling menu.

Before going to the Leveling Menu from the ALC Mode menu, select whether the external ALC signal is to be connected to the front- or rear-panel EXT ALC IN connector.
At the ALC Mode menu, press Ext ALC Front to se lect front panel input, or Ext ALC Rear to select rear panel input.
Now, press Leveling Menu to go to the Leveling Menu.

Next, select the type of external sensor you are using to detect the output power.

To select the external ALC input from an external detector, press External Detector.
To select the external ALC input from a power meter, press Power Meter.
After you have made the external ALC input connection and selected the sensor type, press ALC Loop. The ALC Loop Menu (below) is displayed.

While monitoring the power level at the external detection point, first press Ext ALC Adj, then use the cursor control key or rotary data knob to adjust the external ALC signal to obtain the set power level.
To return to the Leveling Menu, press ALC Mode then press Leveling Menu .

At the Leveling menu, pressing either Internal or Fixed Gain will turn off external leveling.

Press Previous Menu to return to the ALC Mode menu.

Fixed Gain

In the fixed gain mode, the ALC is disabled. The RF Level DAC and step attenuator (if installed) are used to control the relative power level. Power is not detected at any point, and the absolute power level is uncalibrated. Fixed gain mode is selected from the leveling menu.

Press Leveling Menu to go to the Leveling menu.

To select fixed gain mode, press Fixed Gain .
To return to normal ALC operation, press Internal.
Press Previous Menu to return to the ALC Mode menu.

Attenuator Decoupling

In 681XXBs equipped with option 2 step attenuators, the ALC and attenuator work in conjunction to provide leveled output power down to -120 dBm . In the normal (coupled) leveling mode, when the desired power level is set, the correct combination of ALC level and attenuator setting is determined by the instrument firmware. In some applications, such as receiver sensitivity testing, it is desireable to control the ALC level and attenuator setting separately by decoupling the step attenuator from the ALC. The ALC mode menu lets you select attenuator decoupling.

At the ALC Mode menu, press Atten Menu . The Attenuator Menu (below) is displayed.

	Edit.
	L1
	Iecouple
Level	Incr Atter
L1 + 0.0 da dm Atter 50 dB	
	Atten
	Previous
Level Lul Sup fle Modielc Loopl	Eer Cal

This menu lets you decouple the step attenuator from the ALC, set the power level, and set the attenuation in 10 dB steps.

Press Decouple to decouple the step attenuator from the ALC.

Press Edit L1 to open the power level parameter for editing. Edit the current level using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the power level, press Edit L1 to close the open parameter.

To change the attenuation setting, press Incr Atten or Decr Attn. Pressing these soft-keys changes the attenuation in 10 dB steps.

Press Previous Menu to return to the ALC Mode menu.

ALC Power Slope

The ALC power slope function lets you compensate for system, cable, and waveguide variations due to changes in frequency, by linearly increasing or decreasing power output as the frequency increases. As shown in the following illustration, the power slope function provides you with the ability to set both the power slope and the pivot point. The ALC loop menu lets you activate the ALC power slope function.

To go to the ALC Loop Menu from the Level/ALC Control Menu display, press ALC Loop. The ALC Loop Menu (below) is displayed.

	$\begin{gathered} E x \\ A L E \\ \hline \end{gathered}$
F2 20.606 606 606	$\begin{gathered} 51 \text { ope } \\ \text { Orfoff } \end{gathered}$
Leve 1	Edit. Slope
L1 +6. 010 dEm	
	Edit. Pivot.
Level Lul Swp $\overline{\text { LLC }}$ Model $\overline{\text { ALC }}$	Iser Cobl

This menu lets you turn the power slope on or off and edit the slope value and pivot point frequency.

Press Slope On/Off to activate the ALC power slope function.

Press Edit Pivot to open the pivot point frequency parameter for editing. Edit the current frequency using the cursor control key or rotary data knob or enter a new value using the keypad and appropriate termination key. When you have finished setting the open parameter, close it by pressing Edit Pivot again or by making another menu selection.

Press Edit Slope to open the slope parameter for editing. Edit the current slope value using the cursor control key or rotary data knob or enter a new value using the key pad and the STEPS termination key. When you have finished setting the open parameter, close it by pressing Edit Slope again or by making another menu selection.

While monitoring the power level at the device-under-test (DUT), adjust the power slope and pivot point to level the power at the DUT.

The User Cal (user level flatness correction) function lets you calibrate out path variations with frequency that are caused by external switching, amplifiers, couplers, and cables in the test setup. This is done by means of an entered power-offset table from a GPIB power meter or calculated data. When user level flatness correction is activated, the set power level is delivered at the point in the test setup where the calibration was performed. This "flattening" of the test point power level is accomplished by summing a power-offset word (from the power-offset table) with the sweep generator's normal power level DAC word at each frequency point.

Up to five user level flatness correction power-offset tables from 2 to 801 frequency points/table can be created and stored in 681XXB memory for recall. The GPIB power meters supported are the ANRITSU Model ML4803A and the HewlettPackard Models 437B, 438A, and 70100A.

Figure 3-4. Setup for Creating a Power-Offset Table (User Level Flatness Correction)

Equipment Setup

To create a power-offset table for user level flatness correction, connect the equipment (shown in Figure 3-4) as follows:

Step 1 Using a GPIB cable, connect the Power Meter to the 681XXB.

Step 2 Calibrate the Power Meter with the Power Sensor.

Step 3 Connect the Power Sensor to the point in the test setup where the corrected power level is desired.

Power Meter Model and GPIB Address

In order for the 681XXB to control the power meter, the GPIB address and power meter model must be selected from the Configure GPIB menu.
Press SYSTEM to go to the System Menu display. At the System Menu display, press Config. The System Configuration Menu (below) is displayed.

CW	Front. Fianel
	Rear F:arาel
	RF
L1 +6. 10 dBm	GFIE
	Incr
Reset Donfig Setups Secure	Serure Selftest

Next, press GPIB. The Configure GPIB menu (below) is displayed.

At the Configure GPIB menu, press More to go to an additional Configure GPIB menu (below).

Press Pwr Mtr Address to change the address of the power meter on the GPIB (the power meter's default address is 13). Enter the new address, between 1 and 30 , using the cursor control key or the data entry key pad and the terminator key
Hz
ns
ADRS

The new GPIB address will appear on the display.
Press Pwr Mtr Select to select the power meter model being used. (Supported power meters are the ANRITSU ML4803A and Hewlett-Packard 437B, 438A, and 70100A.)

Press Previous Menu to return to the main Configure GPIB menu display.

At the Configure GPIB menu, press Previous Menu to return to the System Configuration menu display.

Creating a Power-Offset Table

The 681XXB must be in CW frequency mode and fixed (non-swept) power level mode in order to create a power-offset table for user level flatness correction.

Place the sweep generator in CW frequency mode by pressing the main menu key

CW/SWEEP
SELECT
At the resulting menu display, press CW . The 681XXB is now in CW frequency mode.

Place the sweep generator in a fixed power level mode by pressing the main menu key

LEVEL/ALC

SELECT
At the resulting menu display, press Level . The 681XXB is now in fixed (non-swept) power level mode.

At the Level Menu, press User Cal . The User Level Cal menu (below) is displayed.

This menu lets you perform the following:

- Create a power-offset table.
- Select a measurement frequency range (edit the start and stop frequency parameters).
- Select the number of points at which correction information is to be taken.
- Apply a power-offset table to the test setup.

First, press the menu soft-key to select the poweroffset table (User 1, User 2, User 3, User 4, or User 5) that you wish to create.
Next, set the measurement frequency range by pressing Edit Start or Edit Stop to open the start (Flo) or stop (Fhi) frequency parameter for editing. Edit the current frequency using the cursor control key or rotary data knob or enter a new value using the keypad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu edit soft-key again or by making another menu selection.
Then, select the number of frequency points at which correction information is to be taken by pressing Edit Points to open the number-of-points parameter for editing. Edit the current number-of -points using the cursor control key or rotary data knob or enter a new value using the keypad and the STEPS termination key. (The number of points
range is 2 to 801.) When you have finished setting the open number-of-points parameter, close it by pressing Edit Points again or by making another menu selection.
Now, press Start Cal to begin automatically taking power level correction information at each frequency point. During this process the menu displays the status: Calibrating along with the current measurement frequency point.

NOTE

To terminate the measurement process at any time before completion, press Abort.

Once the power-offset table has been created, it is stored in non-volatile memory. The power-offset table is now ready to be applied to the test setup. Disconnect the Power Sensor and Power Meter from the test setup.

Applying User Level Flatness Correction

 Whenever user level flatness correction is applied to the test setup by activating the power-offset table, the set power level is delivered at the point where the calibration was performed.To activate the selected power-offset table and apply user level flatness correction to the test setup, press On/Off. The User Level Cal menu will display the status: On.
To turn off the selected power-offset table and remove user level flatness correction from the test setup, press On/Off again. The User Level Cal menu will display the status: Off.

Entering a Power-Offset Table via GPIB

User level flatness correction can be applied to the test setup using a power-offset table created from calculated data and entered via the GPIB. Refer to the 681XXB Programming Manual (P/N 1037010260) for information and instructions on creating a power-offset table and entering it via the GPIB.

Erasing the Power-Offset Tables from Memory
The power-offset tables are stored in non-volatile memory. A master reset is required to erase the contents of the tables and reprogram them with default data.

To perform a master reset, proceed as follows:
Step 1 With the 681XXB in standby, press and hold the RF OUTPUT ON/OFF key.

Step 2 Press the LINE OPERATE/STANDBY key to turn the instrument on.

Step 3 When the first menu is displayed (after the start-up display), release the RF OUTPUT ON/OFF key.

The contents of non-volatile memory have now been erased and reprogrammed with default data.

The sweep generator provides AM, FM, and square wave modulation of the output signal. All modulation modes-AM, FM, and square wave-can be active simultaneously. The following paragraphs provide descriptions and operating instructions for each modulation mode. Use the Amplitude Modulation Mode, Frequency Modulation Mode, and Square Wave M odulation M ode menu maps (Chapter 4, Figures 4-10, $4-11$, and 4-12) to follow the menu sequences.

Amplitude Modulation Operating Modes

Providing Amplitude Modulation

The sweep generator has two AM operation modes-Linear AM and Log AM. In Linear AM mode, sensitivity is continuously variable from $0 \% \mathrm{~N}$ to $100 \% \mathrm{~N}$. The amplitude of the RF output changes linearly as the external AM input changes.

In Log AM mode, sensitivity is continuously variable from $0 \mathrm{~dB} N$ to $25 \mathrm{~dB} N$. The amplitude of the RF output changes exponentially as the AM input changes.

To provide amplitude modulation, first set up the external signal generator, then connect it to either the 681XXB front or rear panel AM IN connector.

Next, press MODULATION. At the resulting menu display, press AM. The External AM Status Menu (below) is displayed.

This menu contains an external AM status window that shows the current menu selections and the measured AM Depth. (The AM depth measurement function measures the voltage of the external moduIation signal and calculates the percentage modulation value.) This menu lets you perform the following:

- Turn AM on and off.
- Select the Linear AM or Log AM operating mode.
- Set the AM Sensitivity
- Select the input impedance (600Ω or 50Ω) of the input connector.

Frequency Modulation Operating Modes

- Select the input connector (front panel or rear panel AM IN) that is connected to the external signal source.

Press On / Off to turn AM on and off. Both the AM status display and AM modulation status area will reflect your selection.

Press Log / Linear to select the AM operating mode. The AM status display will reflect your selection as XX dBN (Log) or XX \% N (Linear).

Press Edit Sens to open the AM Sensitivity parameter, then edit the current value using the cursor control key or rotary data knob or enter a new value using the keypad and the appropriate terminator key ($\mathrm{kHz} / \mathrm{us} /$ STEPS for Linear; MHz/ms/dB for Log). The AM Sensitivity range is $0 \% \mathrm{~N}$ to $100 \% \mathrm{~N}$ in Linear and $0 \mathrm{~dB} N$ to $25 \mathrm{~dB} / \mathrm{in}$ Log. To close the open Am Sensitivity parameter, press Edit Sens or make another menu selection.

Press $600 \Omega / 50 \Omega$ to select the input impedance of the input connector. The AM status display will reflect your selection.

Press Front / Rear to select the front panel or rear panel AM IN connector. The AM status display will reflect your selection.

The sweep generator has two FM operation modes-Locked FM and Unlocked FM. In Locked FM mode, frequency modulation of the output signal is accomplished by summing the modulating signal into the FM control path of the YIG phase-lock loop. Maximum FM deviation is the lesser of $\pm 10 \mathrm{MHz}$ or F mod x 300 for 1 kHz to 500 kHz rates.

In Unlocked FM mode, the YIG phase-lock loop is disabled to allow for peak FM deviations of up to 100 MHz . There are two Unlocked FM modes-Unlocked Narrow and Unlocked Wide.

In Unlocked Narrow mode, frequency modulation is obtained by applying the modulating signal to the fine tuning coil of the YIG-tuned oscillator. Unlocked Narrow FM mode allows maximum deviations of $\pm 10 \mathrm{MHz}$ for DC to 500 kHz rates.

Providing Frequency Modulation

In Unlocked Wide mode, frequency modulation is accomplished by applying the modulating signal to the main tuning coil of the YIG-tuned oscillator. Unlocked Wide FM mode allows maximum deviations of $\pm 100 \mathrm{MHz}$ for DC to 100 Hz rates.

To provide frequency modulation, first set up the external signal generator, then connect it to either the 681XXB front or rear panel FM IN connector.

Next, press MODULATION. At the resulting menu display, press FM. The External FM Status Menu (below) is displayed.

Now, press the menu soft-key More . The additional External FM Status Menu (below) is displayed.

This menu lets you select the FM operating mode.
Press Locked to select the Locked FM operating mode; press Unlocked Narrow to select the Unlocked Narrow FM operating mode; or press Unlocked Wide to select the Unlocked Wide FM operating mode. The FM status display will reflect your selection.

Press Previous Menu to return to the main External FM Status Menu display (next page).

This menu contains an external FM status window that shows the current menu selections and the measured FM Deviation. (The FM deviation measurement function measures the voltage of the external modulation signal and calculates the peak frequency deviation.) This menu lets you perform the following:

- Turn FM on/off.
- Set the FM sensitivity.
- Select the input impedance (600Ω or 50Ω) of the input connector.
- Select the input connector (front panel or rear panel FM IN) that is connected to the external signal source.

Press On / Off to turn FM on and off. Both the FM status display and FM modulation status area will reflect your selection.

Press Edit Sens to open the FM Sensitivity parameter, then edit the current value using the cursor control key or rotary data knob or enter a new value using the keypad and the appropriate terminator key. The FM Sensitivity range is $\pm 1 \mathrm{kHzN}$ to $\pm 20 \mathrm{MHzN}$ for Locked and Unlocked Narrow FM modes and $\pm 100 \mathrm{kHzN}$ to $\pm 100 \mathrm{MHzN}$ for Unlocked Wide FM mode. To close the open FM Sensitivity parameter, press Edit Sens or make another menu selection.

Press $600 \Omega / 50 \Omega$ to select the input impedance of the input connector. The FM status display will reflect your selection.

Press Front/Rear to select the front or rear panel FM IN connector. The FM status display will reflect your selection.

Square Wave Modulation Operating Modes

The 681XXB provides square wave (pulse) modulation of the output signal using modulating signals from either its internal square wave generator or an external signal generator.

The sweep generator's internal square wave generator outputs modulating signals of $400 \mathrm{~Hz}, 1 \mathrm{kHz}$, 7.8125 kHz , and 27.8 kHz . The modulating signals are selectable from a menu.

The 681XXB accepts modulating signals from an external signal generator that are TTL-compatible with the minimum pulse width of $>5 \mu \mathrm{~s}$.

The following are the menu selections necessary to provide square wave (pulse) modulation of the output signal using a modulating signal from both the internal and external sources.

Press MODULATION. At the resulting menu display, press SqWave. The Square Wave Status Menu (below) is displayed.

This menu contains the square wave status window that shows the current menu selections. This menu lets you perform the following:

- Turn square wave modulation on/off.
- Select Internal or External source for the modulation signal.
- Select the polarity of the signal (High or Low) that turns the RF on.
- Goto an additional menu (to select the frequency from the internal source or to select the front or rear panel input connector).

Press On/Off to turn square wave modulation on and off. Both the Square Wave status display and the Square Wave modulation status area will reflect your selection.

Press Internal/External to select the source of the modulating signal. If you select I nternal, the status display shows Source as Internal and Frequency lists the actual source frequency. If you select External, the display shows Frequency as Ext (external) and Source as F ront or Rear to indicate which input connector is selected.

Press L RF On/H RF On to select the polarity of the signal that triggers the RF on.

Press More to go to the additional menu.
Internal Source F requency Selection
If you have selected Internal to use the modulating signal from the internal source, then when you press More the menu shown below is displayed.

Use the cursor control key to chose the desired modulating signal frequency, then press Select to enter the selection into memory. The Square Wave status display will reflect your selection.

Press Previous Menu to return to the initial Square Wave Status Menu display.

External Source Input Connector Selection

If you have selected External to use a modulating signal from an external source, then when you press More the menu (below) is displayed.

Press Front/Rear to select the front or rear panel 7 IN connector. The Square Wave status display shows your selection as Source.
Press Previous Menu to return to the initial Square Wave Status Menu display.

The system configuration function provides menus that let you set or select instrument configuration items; for example, display intensity, polarity of blanking and video marker outputs, RF on or off during retrace or between steps, GPIB address and line terminator, and increment sizes for frequency, power level, and time parameters. Use the System Configuration menu map (Chapter 4, Figure 4-13) to follow the menu sequences.

To go to the System Configuration menu, first press SYSTEM. At the System Menu display, press Config. The System Configuration Menu (below) is displayed.

CW	Front. F:anel
	Rear Farnel
Leve1	RF
L 1 +6.0] dEm	GF'IE
	Incr Menu
Reset Config Setups Secure	elftest.

This menu lets you go to the Front Panel, Rear Panel, RF, GPIB, and Increment Configuration menus.

Configuring the Front Panel

Configuring the front panel of the sweep generator involves adjusting the intensity level of the data display and setting the frequency scaling as required.

To go to the Configure F ront Panel menu from the System Configuration menu, press Front Panel. The Configure F ront Panel Menu (below) is displayed.

Display Intensity

Press Brite (repeatedly) to increase the intensity of the data display to the desired level.

Press Dim (repeatedly) to decrease the intensity of the data display.

Frequency Scaling

Frequency scaling lets you set a reference multiplier value and apply it to all frequency parameters. The reference multiplier can be any value between 0.1 and 14. Changing the multiplier value changes the entered and displayed frequencies, but it does not affect the output of the sweep generator.
For example:
F requency scaling set to 4
CW frequency set to 20 GHz
681 XXB output frequency is $5 \mathrm{GHz}(20 \mathrm{GHz} \div 4)$
Press Freq Scaling to open the reference multiplier parameter, then edit the current value using the cursor control key or rotary data knob or enter a new value using the data entry key pad and any terminator key. To close the open multiplier parameter, press Freq Scaling or make another menu selection.

When done, press Previous Menu to return to the System Configuration menu.

Configuring the Rear Panel

Configuring the rear panel of the sweep generator consists of selecting the polarity of the retrace blanking, bandswitch blanking, retrace penlift, and video marker outputs.

To go to the Configure Rear Panel menu from the System Configuration menu, press Rear Panel. The Configure Rear Panel Menu (below) is displayed.

Press Blanking +/- to select a +5 V or -5 V level for the retrace and bandswitch blanking outputs. The retrace blanking signal output is available at the rear panel RETRACE BLANK OUT connector and AUX I/O connector. The bandswitch blanking signal output is available at the rear panel AUX I/O connector. The display will reflect your selection.

Press Penlift to select normally-open (N / O) or normally-closed (N / C) contacts on the internal penlift relay. The penlift relay output, available at the rear panel PEN LIFT OUT connector, is used to lift a plotter pen during retrace.The display will reflect your selection.

Press Marker $+/-$ to select $\mathrm{a}+5 \mathrm{~V}$ or -5 V level for the video marker output when video markers are selected ON. The video marker signal output is available at the rear panel MARKER OUT connector and AUX I/O connector. The display will reflect your selection.

When done, press Previous Menu to return to the System Configuration menu.

Configuring the RF

Configuring the RF of the 681XXB involves the following:

- Selecting whether the RF should be on or off during retrace.
- Selecting whether the RF should be on or off during frequency switching in CW or step sweep modes.
- Selecting whether a sweep triggered by a single or external trigger should rest at the top or bottom of the sweep ramp.
- Selecting whether the RF should be on or off at reset.
- Selecting 40 dB or 0 dB of attenuation when RF is switched off in units with a step attenuator (Option 2) installed.

To go to the Configure RF Menu (below) from the System Configuration menu, press RF .

Press Retrace RF to select RF On or Off during retrace. The display will reflect your selection.

Press Delta-F RF to select RF On or Off during frequency switching in CW or step sweep modes. The display will reflect your selection.

Press Ramp Rest to select 0 or 10 for the ramp rest point for sweeps triggered a single or external trigger. 0 indicates that the sweep will rest at the bottom of the sweep ramp; 10 indicates that the sweep will rest at the top of the sweep ramp. The display will reflect your selection.

Press More to go to the Additional Configure RF menu for more selections.

Press Previous Menu to return to the System Configuration Menu display.

Additional Configure RF Menu

When you press More, the Additional Configure RF Menu (below) is displayed.

This menu lets you perform the following:

- Select whether the RF should be on or off at reset.
- Select 40 dB or 0 dB of attenuation when RF is switched off in units with a step attenuator (Option 2) installed.

Press Reset State to select RF On or Off at reset. The display will reflect your selection.

NOTE

The Term RF Off selection is only available in those 681XXB models having Option 2 and FirmwareVersion 3.47 and above and in 681X5B models having Option 2 and Firmware Version 1.35 and above.

Press Term RF Off to select 40 dB (minimum) of attenuation when RF is switched off in units with a step attenuator (Option 2) installed. This provides a better output source match. The display will reflect On to indicate the 40 dB of attenuation is applied. Press Term RF Off again to select 0 dB of attenuation when RF is switched off. The display will reflect Off to indicate 0 dB of attenuation is applied.

Press Previous Menu to return to the main Configuration RF Menu display.

Configuring the GPIB

NOTE

The HP8557D Scalar selection is only available in those 681XXB models having Firmware Version 3.45 and aboveand in 681X5B models having Firmware Version 1.33 and above.

The GPIB configuration menus lets you perform the following:

- Set the GPIB address and select the GPIB line terminator for the sweep generator.
- Turn on the source lock mode for operation with a M odel 360B Vector Network Analyzer.
- Select the model and set the GPIB address for the power meter used to create a user level flatness correction power-offset table.
- Select the external interface language for remote operation of units with Option 19.
- Select scalar mode of operation with a Hewlett Packard Model 8757D Scalar Network Analyzer.

To go to the Configure GPIB menu from the System Configuration menu, press GPIB. The Configure GPIB Menu (below) is displayed.

Press GPIB Address to change the address of the 681XXB on the bus (the sweep generator's default GPIB address is 5). Enter a new address, between 1 and 30 , using the cursor control key or the data entry keypad and the terminator key
Hz
ns
ADRS

The new GPIB address will appear on the display.
Press Line Term to select a carriage return (CR) or a carriage return and line feed (CR/LF) as the GPIB data delimiter. Consult the GPIB controller's manual to determine which data delimiter is required.

SS MODE
When SS Mode is selected on, this message is displayed (in the frequency mode title bar) on all menu displays to remind the operator that the 681XXB is in a source lock mode.

Press SS Mode to place the sweep generator in a source lock mode for operation with a Anritsu M odel 360B Vector Network Analyzer. (Refer to paragraph 7-4 for information pertaining to operating the 681XXB with a 360B VNA.) Press SS Mode again to turn the source lock mode off.

Press More to go to the additional Configure GPIB menu.

Press Previous Menu to return to the System Configuration menu.

Additional Configure GPIB Menu

When you press More the additional Configure GPIB menu (below) is displayed.

This menu lets you perform the following:

- Select the model and GPIB address for the power meter that is used to create a user level flatness correction power-offset table. (Refer to page 3-57 for a description of the function.)
- Select the external interface language for remote operation of 681XXBs with Option 19. (Refer to page 2-9 for more information.)
- Select scalar mode of operation with a Hewlett Packard Model 8757D Scalar Network AnaIyzer.

Press Pwr Mtr Address to change the address of the power meter on the GPIB (the power meter's default GPIB address is 13). Enter a new address, between 1 and 30 , using the cursor control key or the data entry keypad and the terminator key

The new GPIB address will appear on the display.

Press Pwr Mtr Select to select the power meter model being used. (Supported power meters are the Anritsu ML4803A and Hewlett-Packard 437B, 438A, and 70100A.)
Press Native SCPI to select the external interface language to be used for remote operation of the 681XXB. (Language selection is only available on instruments that have Option 19 installed.)

Press 8757D Scalar to enable operations with a Hewlett Packard 8757D Scalar Network Analyzer. (Refer to paragraph 7-5 for procedures.) Press 8757D Scalar again to disable the operation.
Press Previous Menu to return to the main Configure GPIB menu display.

The Increment menu lets you set the incremental size for editing frequency, power level, and time parameters. When the increment mode is selected on, these parameter values will increase or decrease by the set amount each time the \wedge or v pad is pressed or the rotary data knob is turned clockwise or counter-clockwise. The menu also lets you turn the increment mode on and off.

To go to the Increment menu from the System Configuration menu, press Incr Menu . The Increment Menu (below) is displayed.

Press Freq Incr to open the frequency increment parameter.

Press Level Incr to open the power level increment parameter.

Press Time Incr to open the time increment parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

Press Incr Mode to turn the increment mode on. Press again to turn it off.

When done, press Previous Menu to return to the System Configuration menu.

3-14

SAVING/RECALLING INSTRUMENT SETUPS

The 681XXB offers the capability to store up to ten complete front panel setups. The setups are numbered 0 through 9 . The following paragraphs describe how to save and recall front panel setups.

Recalling Setups

Saving Setups
 Once you have decided that an instrument setup should be retained for future use, follow the proce-

 dure bel ow to save it.First, press SYSTEM to display the System Menu.
Now, press Setups . The Setups Menu (below) is displayed.

CW	Save
	Recall
Level	
$\mathrm{L} 1 \quad+0.010 \mathrm{dEm}$	
Fly	
Reset Config Setupes Secure	Selftest

Press Save, then enter the desired setup number (between 0 and 9) on the keypad. The setup is now saved.

NOTE

Setup \#0 automatically saves the current front panel settings when the instrument is shutdown using the front panel LINE key. Therefore, it is recommended that you use only setups \#1 through \#9 to save front panel setups.

When instrument shutdown occurs because of main power interruptions, the current front panel settings are not saved.

To recall a previously saved setup, first access the Setups Menu as described above.

At the Setups Menu, press Recall, then enter the setup number on the keypad.

The instrument resets itself to the recalled configuration.
$\begin{array}{ll}\text { Erasing } & \text { The front panel setups are stored in non-volatile } \\ \text { Stored Setups } & \begin{array}{l}\text { memory. A master reset is required to erase the con- } \\ \text { tents of the setups and reprogram them with default } \\ \text { data. }\end{array}\end{array}$
To perform a master reset, proceed as follows:
Step 1 With the 681XXB in standby, press and hold the RF OUTPUT ON/OFF key.

Step 2 Press the LINE OPERATE/STANDBY key to turn the instrument on.

Step 3 When the first menu is displayed (after the start-up display), release the RF OUTPUT ON/OFF key.

The contents of non-volatile memory have now been erased and reprogrammed with default data.

The 681XXB can be operated in a secure mode of operation. In this secure mode, the display of all frequency, power level, and modulation parameters is disabled during both local (front panel) and remote (GPIB) operations. The instrument will continue to function normally in all other respects. The following paragraphs describe how to place the sweep generator in secure mode and how to return to normal operation.

To place the 681XXB in the secure mode, first press SYSTEM to display the System Menu.

Next, press Secure . This places the sweep generator in the secure mode and the Secure Menu (below) is displayed.

NOTE
During secure mode, all main menu keys and menu soft-keys operate normally. The menu soft-key labels are displayed and change with menu selections. Only the parameter display is disabled.

To return the 681XXB to unsecured (normal) operation, press SYSTEM, then press Reset.

3-16
 REFERENCE OSCILLATOR CALIBRATION

The reference oscillator calibration function lets you calibrate the internal 100 MHz crystal reference oscillator of the 681XXB using an external $10 \mathrm{MHz}, 0$ to +10 dBm reference signal.

NOTE

B efore beginning calibration, always let the 681XXB warm up for a minimum of 120 hours.

To perform calibration of the internal reference oscillator, first connect the external 10 MHz reference signal to the 681XXB rear panel 10 MHz REF IN connector.

Next press the SYSTEM main menu key. At the System Menu display, press Cal Menu to go to the Calibration Menu (below).

Press Refrnce Cal to begin calibration.
Press Previous Menu to return to the System Menu display.

When Refrnce Cal is pressed, the Calibration Status Menu (below) is displayed.

Press Proceed to start the calibration.
Press Abort to cancel the calibration and return to the Calibration Menu display.

When Proceed is pressed, the date parameter opens for data entry.

Using the key pad, enter the current date (in any desired format). Then, press any terminator key. The Calibration Status Menu display changes to indicate calibration is in progress.

When the reference oscillator calibration is complete, the Calibration Menu is displayed.

External Reference Not Connected

If calibration is attempted without an external 10 MHz reference signal connected to the rear panel 10 MHz REF IN connector, the Calibration Status Menu displays the following:

Chapter 4
 Local Operation-Menu Maps

Table of Contents

4-1 INTRODUCTION 4-3
4-2 MENU MAP DESCRIPTION 4-3

Chapter 4 Local Operation-Menu Maps

4-1 introduction
4-2 menumap DESCRIPTION

This chapter provides menu maps that support the 681XXB front panel operating instructions found in Chapter 3. It includes menu maps for all of the frequency, power level, and modulation modes of operation. In addition, a menu map for system configuration is also provided.

A menu map shows the menu key selections and instrument menu displays for a particular mode of sweep generator operation. The menu displays are shown as they appear on the instrument and are linked together to show the sequence of menu selection. A brief description of the function of each menu's soft-keys is provided. If a menu soft-key selects another menu, then it is shown linked to that menu. Figure $4-1$, on page 4-5, is a sample menu map annotated to identify the key elements.

The following is a list of the menu maps contained in this chapter.
Figure Title Page
4-1 Sample Menu Map . 4-5
4-2 CW Frequency Mode Menu Map 4-6
4-3 Analog Sweep Frequency Mode Menu Map 4-7
4-4 Step Sweep Frequency Mode Menu Map. 4-8
4-5 Manual Sweep Frequency Mode Menu Map 4-9
4-6 Fixed Power Level Mode Menu Map 4-10
4-7 CW Power Sweep Mode Menu Map 4-11
4-8 Sweep Frequency/Step Power Mode Menu Map 4-12
4-9 Leveling Modes Menu Map 4-13
4-10 Amplitude Modulation Mode Menu Map 4-14
4-11 Frequency Modulation Mode Menu Map 4-15
4-12 Square Wave Modulation Mode Menu Map 4-16
4-13 System Configuration Menu Map 4-17

Note: In Most Cases, Pressing a Menu Soft-Key
That Controls, a Menu Function Turns The Function ON; pressing the Key Again Turns The Function OFF. The Key Labels Change
Appearance to Show the ON/OFF Condition

Figure 4-1. Sample Menu Map (Annotated)

NOTES

Refer to Chapter 7, paragraph 7-2 for Master-Slave operating instructions.

Refer to Chapter 3, paragraph 3-7 for CW Frequency M ode operating instructions.

Figure 4-2. CW Frequency Mode Menu Map

Figure 4-4. Step Sweep F requency Mode Menu Map

NOTE
Refer to Chapter 3, paragraph 3-8
Refer to Chapter 3, paragraph 3-8
for Manual Sweep Frequency Mode for Manual Sweep Freq

NOTE

Refer to Chapter 3, paragraph 3-9 for
Fixed Power Level M ode operating in
structions.

Figure 4-6. Fixed Power Level Mode Menu
Map

Refer to Chapter 3, paragraph 3-10
Refer to Chapter 3, paragraph 3-10
for CW Power Sweep Mode operating for CW Power
instructions.

NOTE

Refer to Chapter 3, paragraph 3-10 for
Sweep Frequency/Step Power M ode operating instructions.

NOTE
Refer to Chapter 3, paragraph 3-11 for Leveling Modes operating instructions

Figure 4-9. Leveling Modes Menu Map

* Display Showing AM Selected On

NOTE
Refer to Chapter 3, paragraph 3-12
for AM M ode operating instructions.

NOTE
Refer to Chapter 3, paragraph 3-12
for FM Mode operating instructions.

Figure 4-11. Frequency Modulation Mode Menu Map

Internal Square Wave Source Selected

External Square Wave Source Selected

NOTE
Refer to Chapter 3, paragraph 3-1 for Square Wave Modulation Mode operating instructions.

Figure 4-12. Square Wave Modulation Mode
 Menu Map

Figure 4-13. System Configuration Menu Map

Chapter 5 Operation Verification

Table of Contents

5-1 INTRODUCTION 5-3
5-2 TEST EQUIPMENT 5-3
5-3 TEST RECORDS 5-3
5-4 INITIAL 681XXB CHECKOUT 5-4
Power Up 5-4
Self Test. 5-4
Resetting the 681XXB 5-4
Warmup Time 5-4
5-5 CW FREQUENCY ACCURACY TEST 5-5
Test Setup. 5-5
Test Procedure 5-6
5-6 POWER LEVEL ACCURACY AND FLATNESS TESTS 5-13
Test Setup 5-13
Power Level Accuracy Test Procedure 5-14
Power Level Flatness Test Procedure 5-15

Chapter 5 Operation Verification

5-1 introduction

5-2 testequipment

5-3 TEST RECORDS

This chapter contains three operation verification tests that can be used to verify Series 681XXB Synthesized Sweep Generator operation.

Setup instructions and performance procedures are included for each test. The results can be compared with the specified limits that are shown on the test record forms that are provided for each test.

Table 5-1 lists the recommended test equipment for performing the operation verification tests in this chapter.

Table 5-1. Recommended Test Equipment

Instrument	Critical Specification	Recommended Manufacturer/Model
Frequency Counter, with Cable Kit and External Mixer	Range: 0.01 to 65 GHz Input Z: 50Ω Resolution: 1 Hz Other: External Time Base Input	EIP Microwave, Inc. Models 538B, 548B, or 578B, with Cable Kit: Option 590 and External Mixer: Option 91 (26.5 to 40 GHz) Option 92 (40 to 60 GHz) Option 93 (60 to 90 GHz)
Power Meter, with Power Sensor	Range: -30 to +20 dBm ($1 \mu \mathrm{~W}$ to 100 mW)	Hewlett-Packard Model 437B, with Power Sensor: HP 8487A (0.01 to 50 GHz)
Oscilloscope	Bandwidth: DC to 150 MHz Vertical Sensitivity: $2 \mathrm{mV} / \mathrm{di}-$ vision Horiz Sensitivity: $50 \mathrm{~ns} /$ division	Tektronix, Inc. Model TAS485
Adapter	K (male) to 2.4 mm (female) Adapts the Power Sensor, HP 8487A, to the 681XXB RF OUTPUT connector ($\leq 40 \mathrm{GHz}$ models)	Hewlett-Packard Part Number: HP 11904D

Tables 5-2 and 5-3 contain test record forms that can be photocopied and used to record the results of operational verification testing of your 681 XXB. These tables are included as part of the operational
verification test procedures and contain test information for all 681XXB models.

Before starting the operation verification tests in this chapter, perform an initial checkout of the 681XXB to be tested. This initial checkout consists of applying power to the sweep generator, verifying that it passes self-test, and resetting it to the factory default parameters.

Power Up First, verify that the rear panel line voltage selector is set for the correct line voltage, then connect the 681XXB to the power source. This automatically places the sweep generator in operation (front panel OPERATE LED on).

During power up, the sweep generator loads its operating program then returns to the exact setup it was in when last turned off.

Self Test Next, perform a self-test of the signal generator to insure proper operation of the instrument PCBs and other internal assemblies.

To self-test the signal generator, press SYSTEM. Then, press the System Menu soft-key Selftest . When the self-test is complete, the sweep generator displays the main CW menu.

NOTE

E rror conditions detected during self-test are displayed as error messages on the data display. They should be corrected before continuing. Refer to Chapter 6 for a listing of error messages and descriptions.

Resetting the 681XXB

The sweep generator should be reset to the factoryselected default parameters before commencing operation verification testing.

To reset the 681XXB, first press SYSTEM, then press Reset. The sweep generator resets to the CW frequency mode and displays the CW Menu.

Warmup Time When the sweep generator is turned on, allow one hour of warmup time before performing operational verification testing. This will assure stable operation of the instrument.

The following test verifies that the CW frequency output of the sweep generator is within accuracy specifications. Table 5-2, beginning on page 5-7, contains test records that you can copy and use to record test results for this test. Test records for standard 681XXB models are contained in Table 5-2A ; test records for 681XXB models with Option 11 are contained in Table 5-2B.

Figure 5-1. Equipment Setup for CW Frequency Accuracy Test
Test Setup Connect the equipment, shown in Figure 5-1, as follows:

Step 1 Connect the 681XXB rear panel 10 MHz REF OUT to the Frequency Counter 10 MHz External Reference input. If the Frequency Counter has an INT/EXT toggle switch, ensure the switch is set to EXT.

Step 2 Connect the 681XXB RF OUTPUT to the Frequency Counter RF Input as follows:
a. For measuring frequencies of 0.01 to 1.0 GHz , connect to the Band 2 input (Connection A).
b. For measuring frequencies of 1.0 to 26.5 GHz , connect to the Band 3 input (Connection A).
c. For measuring frequencies of 26.5 to 65.0 GHz, connect to the Band 4 input as shown in Connection B using the appropriate waveguide mixer; Option 91 (26.5 to 40 GHz) Option 92 (40 to 60 GHz), or Option 93 (60 to 90 GHz).

Test Procedure

The following procedure tests both the coarse and fine loops to verify the accuracy of the CW frequency output.

Step 1 Set up the 681XXB as follows:
a. Reset the instrument by pressing SYSTEM, then RESET. Upon reset, the CW Menu is displayed.
b. Press Edit F1 to open the current frequency parameter for editing.

c. Set F1 to the first test frequency for the model being tested (Table 5-2A is the test record for standard models; Table 5-2B for models with Option 11).

Step 2 Verify that the Frequency Counter reading meets specifications $(\pm 100 \mathrm{~Hz}$ of the value shown on the test record for standard models; $\pm 10 \mathrm{~Hz}$ for instruments with Option 11).

Step 3 Record the Frequency Counter reading on the test record (Table 5-2A or Table 5-2B).

NOTE

The Frequency Counter reading is typically within $\pm 1 \mathrm{~Hz}$. Differences of a few Hertz can be caused by noiseor counter limitations. Differences of $\geq \pm 100 \mathrm{~Hz}(\geq \pm 10 \mathrm{~Hz}$ for instruments with Option 11) indicate a frequency synthesis problem.

Step 4 Set F1 to the next test frequency on the test record and record the Frequency Counter reading.

Step 5 Repeat step 4 until all frequencies listed on the test record have been recorded.

Table 5-2A. CW F requency Accuracy Test Record (for Standard Models) (1 of 3)

Table 5-2A. CW Frequency Accuracy Test Record (for Standard Models) (2 of 3)

* Specification for all frequencies listed above is $\pm 100 \mathrm{~Hz}$. All frequencies are in GHz .

Table 5-2A. CW Frequency Accuracy Test Record (for Standard Models) (3 of 3)

[^0]Table 5-2B. CW Frequency Accuracy Test Record (for Modes with Option 11) (1 of 3)

Model 681 _ ${ }^{\text {B }}$	Serial		Date
68137B / 68145B / 68147B		68153B / 68155B / 68159B	
2.0000000000^{*}		2.0000000000^{*}	
5.0000000000		5.0000000000	
8.0000000000		8.0000000000	
11.0000000000		11.0000000000	
14.0000000000		14.0000000000	
17.0000000000		17.000000000	
20.0000000000		20.0000000000	
		23.0000000000	
		26.5000000000	
2.0000001000			
2.0000002000			
2.0000003000		2.0000001000	
2.0000004000		2.0000002000	
2.0000005000		2.0000003000	
2.0000006000		2.0000004000	
2.0000007000		2.0000005000	
2.0000008000		2.0000006000	
2.0000009000		2.0000007000	
2.0000010000		2.0000008000	
		2.0000009000	
		2.0000010000	

Figure 5-2B. CW Frequency Accuracy Test Record (for Models with Option 11) (2 of 3)

Model 681 _ B		Date
68163B / 68165B / 68169B	68175B / 68177B	
2.0000000000^{*}	2.0000000000^{*}	
5.0000000000	6.0000000000	
8.0000000000	10.0000000000	
11.0000000000	14.0000000000	
14.0000000000	18.0000000000	
17.0000000000	22.0000000000	
20.0000000000	26.0000000000	
23.0000000000	30.0000000000	
26.0000000000	34.0000000000	
29.0000000000	38.0000000000	
32.0000000000	42.0000000000	
35.0000000000	46.0000000000	
38.0000000000	50.0000000000	
40.0000000000		
2.0000001000	2.0000001000	
2.0000002000	2.0000002000	
2.0000003000	2.0000003000	
2.0000004000	2.0000004000	
2.0000005000	2.0000005000	
2.0000006000	2.0000006000	
2.0000007000	2.0000007000	
2.0000008000	2.0000008000	
2.0000009000	2.0000009000	
2.0000010000	2.0000010000	

[^1]Table 5-2B. CW F requency Accuracy Test Record (for Models with Option 11) (3 of 3)

[^2]
5-6 power level ACCURACY AND FLATNESS TESTS

These tests verify that the power level accuracy and flatness of the 681 XXB meet specifications. Table 5-3, beginning on page 5-19, contains test records that you can copy and use to record test results for these tests. Test records are provided for each 681XXB model configuration.

Figure 5-2. Equipment Setup for Power Leve Accuracy and Flatness Tests
Test Setup $\begin{aligned} & \text { Connect the equipment, shown in Figure 5-2, as } \\ & \text { follows: }\end{aligned}$
Step 1 Calibrate the Power Meter with the Power Sensor.

Step 2 Connect the Power Sensor to the RF OUTPUT of the 681XXB.

NOTE
For $\leq 40 \mathrm{GHz}$ models, use the K (male) to 2.4 mm (female) adapter to connect the Power Sensor to the RF OUTPUT connector.

Step 3 Connect the 681XXB rear panel HORIZ OUT to the Oscilloscope CH. 1 input (X input).

NOTE
Before starting these procedures, locate the test record in Table 5-3 for the particular 681XXB model configuration being tested.

Power Leve Accuracy Test Procedure

Power level accuracy is checked by stepping the power down in 1 dB increments from its maximum rated power level.

Step 1 Set up the 681XXB as follows:
a. Reset the instrument by pressing SYSTEM, then Reset. The CW Menu is displayed.

b. Press Edit F1 to open the current frequency parameter for editing.
c. Set F 1 to the CW frequency noted on the test record for the model being tested.
d. Press Edit L1 to open the current power level parameter for editing.
e. Set L1 to the power level noted on the test record.

Step 2 Measure the output power level with the Power Meter and record the reading on the test record.

Step 3 Verify that the Power Meter reading meets the specifications stated on the test record.

Step 4 Set L1 to the next test power level. Record the P ower M eter reading on the test record.

Step 5 Repeat step 4 for the other levels listed on the test record for the current CW frequency.

Step 6 Repeat steps 1 thru 5 for all CW frequencies listed on the test record.

Power Level Flatness Test Procedure

Power level flatness is checked by measuring the power level variation during a full band sweep; first in the step sweep mode, then in the analog sweep mode.

Step 1 Set up the 681XXB as follows for a step sweep power level flatness test:
a. Reset the instrument by pressing SYSTEM, then Reset. The CW Menu is displayed.
b. Press Step to place the 681XXB in the step sweep frequency mode and display the Step Sweep Menu (below).

c. With the Step Sweep menu displayed, press the main menu key

FREQUENCY CONTROL

The Sweep Frequency Control menu (below) is displayed.

d. Press Full to select a full range frequency sweep.
e. Press Edit L1 to open the current power level parameter for editing.
f. Set L1 to the power level noted on the test record.
g. Now, return to the Step Sweep menu by pressing the main menu key

CW/SWEEP

SELECT

h. At the Step Sweep menu, press Sweep Ramp to go to the Step Sweep Ramp menu (below).

i. Press Dwell Time to open the dwell time-per-step parameter for editing.
j. Set the dwell time to 1 second.

NOTE

Monitor the 681XXB's Horizontal Output on the Oscilloscope to determine sweep start and stop.

Step 2 As the 681XXB steps through the full frequency range, measure the maximum and minimum Power Meter readings and record the values on the test record. Verify that the variation (difference between the maximum and minimum readings) does not exceed the value noted on the test record.

Step 3 Set up the 681XXB as follows for an analog sweep power level flatness test:
a. Reset the instrument by pressing SYSTEM, then Reset. The CW Menu is displayed.
b. Press Analog to place the $681 \times$ XB in the analog sweep frequency mode and display the Analog Sweep Menu.

c. With the Analog Sweep menu displayed, press the main menu key

FREQUENCY CONTROL

The Sweep Frequency Control menu (below) is displayed.

d. Press Full to select a full range frequency sweep.
e. Press Edit L1 to open the current power level parameter for editing.
f. Set L1 to the power level noted on the test record.
g. Now, return to the Analog Sweep menu by pressing the main menu key

CW/SWEEP
SELECT
h. At the Analog Sweep menu, press the menu soft-key Sweep Ramp to go to the Analog Sweep Ramp menu.

i. Press Sweep Time to open the sweep time parameter for editing.
j. Set the sweep time to 99 seconds.

NOTE

Monitor the 681XXB's Horizontal Output on the Oscilloscope to determine sweep start and stop.

Step 4 During the analog sweep, measure the maximum and minimum Power Meter readings and record the values on the test record. Verify that the variation (difference between the maximum and minimum readings) does not exceed the value noted on the test record.

Table 5-3. Power Levd Accuracy and Flatness Test Record (1 of 46)

Model 68137B	Serial No.	Date
	Model 68137B (without Option 2A Step Attenuator)	
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)	
	Set Power Measured Power	
	$+13 \mathrm{dBm}$	
	+12 dBm $\quad \mathrm{dBm}$	
	$+11 \mathrm{dBm}$	
	$+10 \mathrm{dBm}$	
	+9 dBm $\quad \mathrm{dBm}$	
	$+8 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+7 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+6 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+5 \mathrm{dBm} \quad \mathrm{dBm}^{\text {d }}$	
	$+4 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+3 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+2 \mathrm{dBm}$	
	$+1 \mathrm{dBm}$	
	* Specification is $\pm 1.0 \mathrm{~dB}$.	

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+13 dBm	dBm		

** Maximum variation is 1.6 dB .
Power Level Flatness (Analog Sweep)

Set Power
$+13 \mathrm{dBm}$
Max Power
\qquad
dBm
Min Power
\qquad dBm
*** Maximum variation is 2.0 dB (typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (2 of 46)

Model 68137B	Serial No.	Date
	Model 68137B (with Option 2A Step Attenuator)	
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)	
	Set Power Measured Power	
	$+11 \mathrm{dBm}$	
	$+10 \mathrm{dBm}$	
	$+9 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+8 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+7 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+6 \mathrm{dBm}$	
	$+5 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+4 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+3 \mathrm{dBm}$	
	$+2 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+1 \mathrm{dBm} \quad \mathrm{dBm}$	
	$+0 \mathrm{dBm}$	
	$-1 \mathrm{dBm} \quad \mathrm{dBm}$	
	* Specification is $\pm 1.0 \mathrm{~dB}$.	

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+11 dBm	dBm	dBm^{2}	dB

** Maximum variation is 1.6 dB .
Power Level Flatness (Analog Sweep)
Set Power

Max Power

Min Power
Variation ***
$+11 \mathrm{dBm}$ \qquad dBm \qquad
\qquad
*** Maximum variation is 6.0 dB (typical, not a specification).

Table 5-3. Power Level Accuracy and Flatness Test Record (3 of 46)
Model 68137B w/Option 15A \quad Serial No. \quad Date__

> Model 68137B with Option 15A High Power (without Option 2A Step Attenuator)
> Power Level Accuracy *
> (CW Frequency =5.0 GHz)
Set Power Measured Power
$+17 \mathrm{dBm} \quad \mathrm{dBm}$
$+16 \mathrm{dBm} \quad \mathrm{dBm}$
$+15 \mathrm{dBm} \quad \mathrm{dBm}$
$+14 \mathrm{dBm} \quad \mathrm{dBm}$
$+13 \mathrm{dBm} \quad \mathrm{dBm}$
$+12 \mathrm{dBm} \quad \mathrm{dBm}$
$+11 \mathrm{dBm} \quad \mathrm{dBm}$
$+10 \mathrm{dBm} \quad \mathrm{dBm}$
$+9 \mathrm{dBm} \quad \mathrm{dBm}$
$+8 \mathrm{dBm}$ \qquad dBm
$+7 \mathrm{dBm}$ \qquad dBm
$+6 \mathrm{dBm}$ \qquad dBm
$+5 \mathrm{dBm}$ \qquad dBm

* Specification is $\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+17 dBm	_dBm	dBm	

** Maximum variation is 1.6 dB .
Power Level Flatness (Analog Sweep)
Set Power
Max Power
Min Power
\qquad dBm
Variation ***
\qquad dB

[^3]Table 5-3. Power Leve Accuracy and Flatness Test Record (4 of 46)

Model 68137B w/Option 15A	Serial No.		Date
Model 68137B with Option 15A High Power (with Option 2A Step Attenuator)			
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)			
	Set Power	Measured Power	
	+15 dBm	_dBm	
	+14 dBm	dBm	
	+13 dBm	$\ldots \mathrm{dBm}$	
	+12 dBm	dBm	
	+11 dBm	dBm	
	+10 dBm	dBm	
	$+9 \mathrm{dBm}$	dBm	
	$+8 \mathrm{dBm}$	_dBm	
	$+7 \mathrm{dBm}$	_dBm	
	$+6 \mathrm{dBm}$	dBm	
	$+5 \mathrm{dBm}$	dBm	
	$+4 \mathrm{dBm}$	diBm	
	$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
	* Specifica	$\pm 1.0 \mathrm{~dB}$.	

Power Level Flatness (Step Sweep)
Set Power

Max Power	Min Power
dBm	dBm

Variation **
\qquad dB
\qquad dBm
** Maximum variation is 1.6 dB .

Power Level Flatness (Analog Sweep)

Set Power
$+15 \mathrm{dBm}$

Max Power
\qquad dBm

Variation ***
\qquad
${ }^{* * *}$ Maximum variation is 6.0 dB (typical, not a specification).

Table 5-3. Power Leved Accuracy and Flatness Test Record (5 of 46)

Model 68145B Serial No.				Date
Model 68145B (without Option 2A Step Attenuator)				
Power Level Accuracy Power Level Accuracy				
Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+13 dBm	dBm	
+12 dBm	dBm	+12 dBm	$\ldots \mathrm{dBm}$	
+11 dBm	dBm	+11 dBm	diBm	
$+10 \mathrm{dBm}$	dBm	+10 dBm	$\ldots \mathrm{dBm}$	
+ 9 dBm	dBm	+ 9 dBm	dBm	
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
$+7 \mathrm{dBm}$	dBm	+ 7 dBm	dBm	
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
+ 5 dBm	dBm	+ 5 dBm	_dBm	
$+4 \mathrm{dBm}$	dBm	+ 4 dBm	dBm	
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	
$+2 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		
Power Level Flatness (Step Sweep)				
Set Power	Max		Min Power	Variation **
+13 dBm		dBm	dBm	dB
** Maximum variation is 1.6 dB .				
Power Level Flatness (Analog Sweep)				
Set Power	Max		Min Power	Variation ***
+13 dBm		dBm	$\ldots \mathrm{dBm}$	dB
*** Maximum variation is 2.0 dB (typical, not a specification).				

Table 5-3. Power Leve Accuracy and Flatness Test Record (6 of 46)

Model 68145B	Serial No.			Date
Model 68145B (with Option 2A Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		
Set Power	Measured Power	Set Power	Measured Power	
+11 dBm	dBm	+11 dBm	dBm	
$+10 \mathrm{dBm}$	dBm	+10 dBm	dBm	
$+9 \mathrm{dBm}$	dBm	+ 9 dBm	diBm	
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	_dBm	
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	_dBm	
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	
$+5 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm	
$+4 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	_dBm	
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	
$+2 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	
$+0 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	_dBm	
-1dBm	_dBm	-1 dBm	_dBm	
*Specificatio	1.0 dB .	* Specification	$\pm 1.0 \mathrm{~dB}$.	

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+11 dBm	dBm		

** Maximum variation is 1.6 dB .

Power Level Flatness (Analog Sweep)

Set Power
Max Power
Min Power
$+11 \mathrm{dBm}$ \qquad dBm \qquad
Variation ***
\qquad
*** Maximum variation is 6.0 dB (typical, not a specification).

Table 5-3. Power Level Accuracy and Flatness Test Record (7 of 46)

Model 68145B w/Option 15A S		No.		Date
Model 68145B with Option 15A High Power (without Option 2A Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		
Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+17 dBm	dBm	
+12 dBm	dBm	+16 dBm	dBm	
+11 dBm	dBm	+15 dBm	$\ldots \mathrm{dBm}$	
$+10 \mathrm{dBm}$	dBm	+14 dBm	$\ldots \mathrm{dBm}$	
+ 9 dBm	dBm	+13 dBm	dBm	
$+8 \mathrm{dBm}$	dBm	+ 12 dBm	dBm	
$+7 \mathrm{dBm}$	dBm	+11 dBm	dBm	
$+6 \mathrm{dBm}$	dBm	+10 dBm	_dBm	
+ 5 dBm	dBm	+ 9 dBm	dBm	
+ 4 dBm	dBm	$+8 \mathrm{dBm}$	_dBm	
$+3 \mathrm{dBm}$	dBm	+ 7dBm	dBm	
$+2 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	_dBm	
$+1 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm	
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		
Power Level Flatness (Step Sweep)				
Set Power	Max		Min Power	Variation **
+13 dBm		dBm	dBm	dB
** Maximum variation is 1.6 dB .				
Power Level Flatness (Analog Sweep)				
Set Power	Max		Min Power	Variation ***
+13 dBm		dBm	dBm	dB
${ }^{* * *}$ Maximum variation is 2.0 dB (typical, not a specification).				

Table 5-3. Power Leve Accuracy and Flatness Test Record (8 of 46)

Model 68145B w/Option 15A		No.		Date
Model 68145B with Option 15A High Power (with Option 2A Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		
Set Power	Measured Power	Set Power	Measured Power	
+11 dBm	dBm	+15 dBm	dBm	
+10 dBm	dBm	+14 dBm	$\ldots \mathrm{dBm}$	
+ 9 dBm	dBm	+13 dBm	diBm	
$+8 \mathrm{dBm}$	dBm	+12 dBm	dBm	
$+7 \mathrm{dBm}$	dBm	+11 dBm	_dBm	
$+6 \mathrm{dBm}$	dBm	+10 dBm	dBm	
+ 5 dBm	dBm	+ 9 dBm	dBm	
+ 4 dBm	dBm	$+8 \mathrm{dBm}$	dBm	
$+3 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	_dBm	
$+2 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	
$+1 \mathrm{dBm}$	dBm	+ 5 dBm	_dBm	
$+0 \mathrm{dBm}$	dBm	+ 4 dBm	_dBm	
$-1 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	_dBm	
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		
Power Level Flatness (Step Sweep)				
Set Power	Max		Min Power	Variation **
+ 11 dBm		dBm	_dBm	dB
** Maximum variation is 1.6 dB .				
Power Level Flatness (Analog Sweep)				
Set Power	Max		Min Power	Variation ***
+ 11 dBm		dBm	$\ldots \mathrm{dBm}$	dB
${ }^{* * *}$ Maximum variation is 6.0 dB (typical, not a specification).				

Table 5-3. Power Leve Accuracy and Flatness Test Record (9 of 46)

Model 68147B		No.		Date
Model 68147B (without Option 2A Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		
Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+13 dBm	dBm	
+12 dBm	dBm	+12 dBm	dBm	
+11 dBm	dBm	+11 dBm	_dBm	
+10 dBm	dBm	+10 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	_dBm	
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	_dBm	
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	_dBm	
+ 6 dBm	dBm	$+6 \mathrm{dBm}$	dBm	
$+5 \mathrm{dBm}$	dBm	+ 5 dBm	_dBm	
$+4 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	dBm	
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	
$+2 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		
Power Level Flatness (Step Sweep)				
Set Power	Max		Min Power	Variation **
+13 dBm		dBm	dBm	dB
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 20 GHz).				
Power Level Flatness (Analog Sweep)				
Set Power	Max		Min Power	Variation ***
+13 dBm		dBm	dBm	dB
${ }^{* * *}$ Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 2.0 dB (0.05 to 20 GHz)(typical, not a specification).				

Table 5-3. Power Level Accuracy and Flatness Test Record (10 of 46)

Model 68147B		No.		Date
Model 68147B (with Option 2A Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		
Set Power	Measured Power	Set Power	Measured Power	
+11 dBm	dBm	+11 dBm	dBm	
+10 dBm	dBm	+10 dBm	dBm	
+ 9 dBm	dBm	+ 9 dBm	dBm	
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	dBm	
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	_dBm	
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	diBm	
$+5 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm	
+ 4 dBm	dBm	+ 4 dBm	_dBm	
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	
$+2 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	
$+0 \mathrm{dBm}$	dBm	+ 0 dBm	dBm	
$-1 \mathrm{dBm}$	dBm	$-1 \mathrm{dBm}$	_dBm	
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		
Power Level Flatness (Step Sweep)				
Set Power	Max		Min Power	Variation **
+11 dBm		dBm	dBm	dB
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); $1.6 \mathrm{~dB}(0.05$ to 20 GHz$)$.				
Power Level Flatness (Analog Sweep)				
Set Power	Max		Min Power	Variation ***
+11 dBm		dBm	_dBm	$\ldots \mathrm{dB}$
${ }^{* * *}$ Maximum variation is 7.0 dB (0.01 to 0.05 GHz); 6.0 dB (0.05 to 20 GHz)(typical, not a specification).				

Table 5-3. Power Level Accuracy and Flatness Test Record (11 of 46)

Model 68147B w/Option 15A S		No.		Date
Model 68147B with Option 15A High Power (without Option 2A Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		
Set Power	Measured Power	Set Power	Measured Power	
+13 dBm	dBm	+17 dBm	dBm	
+12 dBm	dBm	+16 dBm	dBm	
+11 dBm	_dBm	+15 dBm	$\ldots \mathrm{dBm}$	
+10 dBm	dBm	+14 dBm	$\ldots \mathrm{dBm}$	
+ 9 dBm	dBm	+13 dBm	dinm	
$+8 \mathrm{dBm}$	dBm	+ 12dBm	$\ldots \mathrm{dBm}$	
$+7 \mathrm{dBm}$	dBm	+11 dBm	$\ldots \mathrm{dBm}$	
+ 6 dBm	dBm	+10 dBm	_dBm	
+ 5 dBm	_dBm	$+9 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
$+4 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+7 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
$+2 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	+ 5 dBm	$\ldots \mathrm{dBm}$	
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		
Power Level Flatness (Step Sweep)				
Set Power	Max	er	Min Power	Variation **
+13 dBm		dBm	dBm	$\ldots \mathrm{dB}$
${ }^{* *}$ Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 20.0 GHz).				
Power Level Flatness (Analog Sweep)				
Set Power	Max		Min Power	Variation ***
+13 dBm		dBm	_dBm	_dB
${ }^{* * *}$ Maximum variation is $4.0 \mathrm{~dB}(0.0-1$ to 0.05 GHz$) ; 2.0 \mathrm{~dB}$ (0.05 to 20.0 GHz)(typical, not a specification).				

Table 5-3. Power Leve Accuracy and Flatness Test Record (12 of 46)

Model 68147B w/Option 15A		No.		Date
Model 68147B with Option 15A High Power (with Option 2A Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		
Set Power	Measured Power	Set Power	Measured Power	
+11 dBm	dBm	+15 dBm	_dBm	
+10 dBm	dBm	+14 dBm	dBm	
+ 9 dBm	dBm	$+13 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
$+8 \mathrm{dBm}$	dBm	+12 dBm	dBm	
$+7 \mathrm{dBm}$	dBm	+11 dBm	dBm	
$+6 \mathrm{dBm}$	dBm	+10 dBm	dBm	
+ 5 dBm	dBm	+ 9 dBm	_dBm	
+ 4 dBm	dBm	$+8 \mathrm{dBm}$	dBm	
$+3 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
$+2 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	_dBm	
$+1 \mathrm{dBm}$	dBm	+ 5 dBm	dBm	
+ 0 dBm	dBm	+ 4 dBm	dBm	
$-1 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		
Power Level Flatness (Step Sweep)				
Set Power	Max		Min Power	Variation **
+11 dBm		dBm	dBm	_dB
${ }^{* *}$ Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 20.0 GHz).				
Power Level Flatness (Analog Sweep)				
Set Power	Max		Min Power	Variation ***
+11 dBm		dBm	dBm	_dB

Table 5-3. Power Leve Accuracy and Flatness Test Record (13 of 46)

Model 68153B	Serial No.		Date	
Model 68153B (without Option 2A Step Attenuator)				
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=\mathbf{2 2 . 0} \mathbf{G H z}$)	
	Set Power	Measured Power	Set Power	Measured Power
	+ 9 dBm	$\ldots \mathrm{dBm}$	$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+8 \mathrm{dBm}$	dBm	+ 5 dBm	dBm
	$+7 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+4 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+5 \mathrm{dBm}$	_dBm	$+2 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+4 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+0 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+2 \mathrm{dBm}$	_dBm	-1 dBm	_dBm
	$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-2 \mathrm{dBm}$	dBm
	+ 0 dBm	$\ldots \mathrm{dBm}$	$-3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$-1 \mathrm{dBm}$	_dBm	-4dBm	_dBm
	-2dBm	dBm	$-5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	-3dBm	$\ldots \mathrm{dBm}$	$-6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)				
Set Power	Max Power	Min Power		tion **
+ 6 dBm	_dBm	$\ldots \mathrm{dBm}$		_dB
** Maximum variation is 1.6 dB .				
Power Level Flatness (Analog Sweep)				
Set Power	Max Power	Min Power	Variation ***	
$+6 \mathrm{dBm}$	dBm	$\underline{d B m}$		_dB
${ }^{* * *}$ Maximum variation is 2.0 dB (2 to 20 GHz); 4.0 dB (20 to 26.5 GHz)(typical, not a specification).				

Table 5-3. Power Level Accuracy and Flatness Test Record (14 of 46)

Model 68153B	Serial No.		Date	
Model 68153B (with Option 2A Step Attenuator)				
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
	Set Power	Measured Power	Set Power	Measured Power
	$+7 \mathrm{dBm}$	_dBm	$+3.5 \mathrm{dBm}$	dBm
	$+6 \mathrm{dBm}$	_dBm	$+2.5 \mathrm{dBm}$	_dBm
	+ 5 dBm	dBm	$+1.5 \mathrm{dBm}$	dBm
	+ 4 dBm	dBm	$+0.5 \mathrm{dBm}$	dBm
	$+3 \mathrm{dBm}$	_dBm	$-0.5 \mathrm{dBm}$	dBm
	$+2 \mathrm{dBm}$	dBm	-1.5dBm	_dBm
	$+1 \mathrm{dBm}$	_dBm	$-2.5 \mathrm{dBm}$	dBm
	$+0 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-3.5 \mathrm{dBm}$	dBm
	$-1 \mathrm{dBm}$	dBm	$-4.5 \mathrm{dBm}$	_dBm
	$-2 \mathrm{dBm}$	dBm	$-5.5 \mathrm{dBm}$	_dBm
	$-3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-6.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	-4dBm	dBm	$-7.5 \mathrm{dBm}$	dBm
	$-5 \mathrm{dBm}$	dBm	$-8.5 \mathrm{dBm}$	dBm
	* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)				
Set Power	Max Power	Min Power		tion **
+ 3.5 dBm	dBm	_dBm		dB
** Maximum variation is 1.6 dB .				
Power Level Flatness (Analog Sweep)				
Set Power	Max Power	Min Power	Variation ***	
+ 3.5 dBm	dBm	dBm	dB	
${ }^{* * *}$ Maximum variation is $6.0 \mathrm{~dB}(2$ to 20 GHz$) ; 8.2 \mathrm{~dB}$ (20 to 26.5 GHz)(typical, not a specification).				

Table 5-3. Power Leve Accuracy and Flatness Test Record (15 of 46)

Model 68153B w/Option 15A	Serial No.
	Model 68153B with Option 15A High Power (without Option 2A Step Attenuator)

Date \qquad
Model 68153B with Option 15A High Power (without Option 2A Step Attenuator)

Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+10 dBm	dBm
+12 dBm	dBm	+ 9 dBm	dBm
+11 dBm	dBm	$+8 \mathrm{dBm}$	dBm
+10 dBm	dBm	$+7 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	$+6 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm
$+5 \mathrm{dBm}$	dBm	+ 2 dBm	dBm
$+4 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
+ 2 dBm	dBm	- 1 dBm	dBm
$+1 \mathrm{dBm}$	dBm	-2dBm	dBm
* Specificati	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+ 10 dBm	dBm	dBm	dB
** Maximum variation is 1.6 dB .			
Power Level Flatness (Analog Sweep)			
Set Power	Max Power	Min Power	Variation ***
+ 10 dBm	dBm	dBm	dB
${ }^{* * *}$ Maximum variation is 2.0 dB (2 to 20 GHz); 4.0 dB (20 to 26.5 GHz)(typical, not a specification).			

Table 5-3. Power Leve Accuracy and Flatness Test Record (16 of 46)

Table 5-3. Power Leve Accuracy and Flatness Test Record (17 of 46)

Model 68155B S		erial No.		Date	
Model 68155B (without Option 2A Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	_dBm	$+9 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm
+12 dBm	dBm	$+8 \mathrm{dBm}$	_dBm	$+5 \mathrm{dBm}$	dBm
+11 dBm	dBm	$+7 \mathrm{dBm}$	_dBm	$+4 \mathrm{dBm}$	dBm
+10 dBm	dBm	$+6 \mathrm{dBm}$	_dBm	$+3 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	$+5 \mathrm{dBm}$	_dBm	$+2 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	_dBm	-1 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	-2 dBm	dBm
$+4 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm	-3dBm	dBm
$+3 \mathrm{dBm}$	dBm	-1dBm	_dBm	-4dBm	dBm
$+2 \mathrm{dBm}$	dBm	-2 dBm	dBm	$-5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm	-6dBm	dBm
* Specificatio	s $\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.	* Speciificatio	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
$+6 \mathrm{dBm}$	dBm	dBm	dB

** Maximum variation is 1.6 dB .

Power Level Flatness (Analog Sweep)

Set Power	Max Power	Min Power	Variation ${ }^{* * *}$
+6 dBm	dBm	dBm	dB

${ }^{* * *}$ Maximum variation is $2.0 \mathrm{~dB}(0.5$ to 20 GHz$) ; 4.0 \mathrm{~dB}$ (20 to 26.5 GHz)(typical, not a specification).

Table 5-3. Power Level Accuracy and Flatness Test Record (18 of 46)

Model 68155B	Serial No.			Date	
Model 68155B (with Option 2A Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	$+7 \mathrm{dBm}$	_dBm	$+3.5 \mathrm{dBm}$	dBm
+10 dBm	dBm	$+6 \mathrm{dBm}$	dBm	+2.5dBm	dBm
+ 9 dBm	dBm	$+5 \mathrm{dBm}$	dBm	$+1.5 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	+ 4 dBm	_dBm	$+0.5 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	$-1.5 \mathrm{dBm}$	_dBm
$+5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	$-2.5 \mathrm{dBm}$	dBm
+ 4 dBm	dBm	$+0 \mathrm{dBm}$	_dBm	$-3.5 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	-1 dBm	dBm	$-4.5 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	dBm	-2dBm	dBm	$-5.5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	_dBm	$-6.5 \mathrm{dBm}$	dBm
$+0 \mathrm{dBm}$	dBm	-4dBm	dBm	$-7.5 \mathrm{dBm}$	dBm
-1dBm	dBm	$-5 \mathrm{dBm}$	dBm	$-8.5 \mathrm{dBm}$	dBm
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max		Min Power		ion **
$+3.5 \mathrm{dBm}$		dBm	dB		dB
** Maximum variation is 1.6 dB .					
Power Level Flatness (Analog Sweep)					
Set Power	Max Power		Min Power	Variation ***	
$+3.5 \mathrm{dBm}$	dBm		dB		
${ }^{* * *}$ Maximum variation is 6.0 dB (0.5 to 20 GHz); 8.2 dB (20 to 26.5 GHz)(typical, not a specification).					

Table 5-3. Power Leve Accuracy and Flatness Test Record (19 of 46)

Model 68155B w/Option 15A		Serial No.		Date	
Model 68155B with Option 15A High Power (without Option 2A Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=\mathbf{2 2 . 0} \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+13 dBm	_dBm	+10 dBm	$\ldots \mathrm{dBm}$
+12 dBm	dBm	+12 dBm	dBm	+ 9 dBm	$\ldots \mathrm{dBm}$
+11 dBm	_dBm	+11 dBm	dBm	$+8 \mathrm{dBm}$	dBm
+10 dBm	_dBm	+10 dBm	_dBm	$+7 \mathrm{dBm}$	_dBm
$+9 \mathrm{dBm}$	_dBm	$+9 \mathrm{dBm}$	_dBm	$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
$+8 \mathrm{dBm}$	_dBm	$+8 \mathrm{dBm}$	dBm	+ 5 dBm	dBm
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	_dBm
+ 6 dBm	dBm	$+6 \mathrm{dBm}$	dBm	+ 3 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	_dBm	+ 2 dBm	_dBm
$+4 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	_dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	+ 0 dBm	_dBm
$+2 \mathrm{dBm}$	_dBm	$+2 \mathrm{dBm}$	dBm	$-1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	+ 1 dBm	dBm	-2dBm	_dBm
* Specificat	$\pm 1.0 \mathrm{~dB}$.	* Specificati	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+10 dBm	-dBm	$-\quad \mathrm{dBm}$	$-\quad \mathrm{dB}$

** Maximum variation is 1.6 dB .
Power Level Flatness (Analog Sweep)
Set Power
$+10 \mathrm{dBm}$
${ }^{* * *}$ Maximum variation is $2.0 \mathrm{~dB}(0.5$ to 20 GHz$) ; 4.0 \mathrm{~dB}$ (20 to 26.5 GHz)(typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (20 of 46)

Model 68155B w/Option 15A		Serial No.		Date	
Model 68155B with Option 15A High Power (with Option 2A Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	+11 dBm	dBm	$+7.5 \mathrm{dBm}$	_dBm
+10 dBm	dBm	+10 dBm	dBm	$+6.5 \mathrm{dBm}$	dBm
$+9 \mathrm{dBm}$	dBm	+ 9 dBm	_dBm	+ 5.5 dBm	dBm
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	_dBm	+ 4.5 dBm	_dBm
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	dBm	$+3.5 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	+ 2.5 dBm	dBm
$+5 \mathrm{dBm}$	dBm	+ 5 dBm	dBm	+ 1.5 dBm	dBm
$+4 \mathrm{dBm}$	dBm	+ 4 dBm	_dBm	$+0.5 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	dBm	+ 2 dBm	dBm	$-1.5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	-2.5 dBm	dBm
+ 0 dBm	dBm	$+0 \mathrm{dBm}$	dBm	$-3.5 \mathrm{dBm}$	dBm
$-1 \mathrm{dBm}$	dBm	$-1 \mathrm{dBm}$	dBm	-4.5 dBm	dBm
* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specificati	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power

$+7.5 \mathrm{dBm}$

Max Power
\qquad dBm

Min Power
\square dBm

Variation **

\qquad
** Maximum variation is 1.6 dB .

Power Level Flatness (Analog Sweep)

Set Power
$+7.5 \mathrm{dBm}$ \qquad dBm
Max Power
Min Power
\qquad dBm

Variation ***
dB
${ }^{* * *}$ Maximum variation is $6.0 \mathrm{~dB}(0.5$ to 20 GHz$) ; 8.2 \mathrm{~dB}(20$ to 26.5 GHz$)$ (typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (21 of 46)

Model 68159	Serial No.			Date	
Model 68159B (without Option 2A Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+ 9 dBm	$\ldots \mathrm{dBm}$	$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
+12 dBm	dBm	$+8 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
+11 dBm	dBm	$+7 \mathrm{dBm}$	_dBm	$+4 \mathrm{dBm}$	dBm
+10 dBm	dBm	+ 6 dBm	dBm	$+3 \mathrm{dBm}$	dBm
$+9 \mathrm{dBm}$	_dBm	+ 5 dBm	_dBm	$+2 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	+ 4 dBm	dBm	$+1 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	_dBm	-1 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	-2dBm	dBm
$+4 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	_dBm	$-3 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	-1 dBm	$\ldots \mathrm{dBm}$	-4dBm	$\ldots \mathrm{dBm}$
$+2 \mathrm{dBm}$	_dBm	$-2 \mathrm{dBm}$	_dBm	$-5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	_dBm	$-3 \mathrm{dBm}$	_dBm	-6dBm	$\ldots \mathrm{dBm}$
* Specification	s $\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power

$+6 \mathrm{dBm}$
-
${ }^{* *}$ Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 1.6 \mathrm{~dB}(0.05$ to 26.5 GHz$)$.

Power Level Flatness (Analog Sweep)

Set Power
$+6 \mathrm{dBm}$
Max Power
\qquad dBm
${ }^{* * *}$ Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 2.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 4.0 \mathrm{~dB}(20$ to 26.5 GHz$)($ typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (22 of 46)

Model 68159B	Serial No.			Date	
Model 68159B (with Option 2A Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	$+7 \mathrm{dBm}$	dBm	+ 3.5 dBm	dBm
+10 dBm	dBm	$+6 \mathrm{dBm}$	didm	$+2.5 \mathrm{dBm}$	dBm
$+9 \mathrm{dBm}$	dBm	+ 5 dBm	_dBm	+ 1.5 dBm	$\ldots \mathrm{dBm}$
$+8 \mathrm{dBm}$	dBm	+ 4 dBm	dBm	$+0.5 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	_dBm
$+6 \mathrm{dBm}$	_dBm	+ 2 dBm	dBm	-1.5 dBm	$\ldots \mathrm{dBm}$
$+5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	$-2.5 \mathrm{dBm}$	dBm
$+4 \mathrm{dBm}$	_dBm	+ 0 dBm	dBm	$-3.5 \mathrm{dBm}$	dBm
+ 3 dBm	_dBm	-1 dBm	_dBm	-4.5 dBm	$\ldots \mathrm{dBm}$
$+2 \mathrm{dBm}$	dBm	-2 dBm	dBm	$-5.5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	_dBm	$-6.5 \mathrm{dBm}$	_dBm
+ 0 dBm	_dBm	-4dBm	_dBm	$-7.5 \mathrm{dBm}$	dBm
-1 dBm	_dBm	$-5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-8.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max	er	Min Power	Va	on **
+ 3.5 dBm		dBm	_ dB		dB
${ }^{* *}$ Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 26.5 GHz).					
Power Level Flatness (Analog Sweep)					
Set Power	Max	er	Min Power		ion ***
+ 3.5 dBm	-	dBm	_dB		dB
Maximum variation is $7.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 6.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 8.2 \mathrm{~dB}(20$ to 26.5 GHz$)($ typical, not a specification).					

Table 5-3. Power Leve Accuracy and Flatness Test Record (23 of 46)
Model 68159B w/Option 15A Serial No. \quad Date

> Model 68159B with Option 15A High Power (without Option 2A Step Attenuator)

Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+13 dBm	dBm	+10 dBm	dBm
+12 dBm	dBm	+12 dBm	dBm	+ 9 dBm	_dBm
+11 dBm	dBm	+11 dBm	dBm	$+8 \mathrm{dBm}$	dBm
$+10 \mathrm{dBm}$	dBm	$+10 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	+ 9 dBm	dBm	+ 6 dBm	dBm
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	dBm	+ 4 dBm	dBm
$+6 \mathrm{dBm}$	dBm	+ 6 dBm	dBm	$+3 \mathrm{dBm}$	dBm
$+5 \mathrm{dBm}$	dBm	+ 5 dBm	dBm	$+2 \mathrm{dBm}$	dBm
$+4 \mathrm{dBm}$	dBm	+ 4 dBm	dBm	$+1 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	_dBm	+ 2 dBm	dBm	$-1 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	$-2 \mathrm{dBm}$	dBm
* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power
$+10 \mathrm{dBm}$
Max Power
\qquad dBm

Variation **
\qquad
dB
${ }^{* *}$ Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 1.6 \mathrm{~dB}(0.05$ to 26.5 GHz).

Power Level Flatness (Analog Sweep)

Set Power
$+10 \mathrm{dBm}$

Max Power
\qquad dBm

Min Power
\qquad dBm

Variation ***
\qquad

Table 5-3. Power Level Accuracy and Flatness Test Record (24 of 46)

Model 68159B w/Option 15A		Serial No.		Date	
Model 68159B with Option 15A High Power (with Option 2A Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=22.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	+11 dBm	dBm	+ 7.5 dBm	dBm
+10 dBm	dBm	+10 dBm	dBm	+ 6.5 dBm	dBm
+ 9 dBm	dBm	+ 9 dBm	_dBm	+ 5.5 dBm	dBm
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	dBm	+ 4.5 dBm	dBm
$+7 \mathrm{dBm}$	dBm	+ 7 dBm	dBm	+ 3.5 dBm	dBm
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	+ 2.5 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm	+ 1.5 dBm	dBm
$+4 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	dBm	+ 0.5 dBm	dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	-1.5 dBm	dBm
$+1 \mathrm{dBm}$	_dBm	$+1 \mathrm{dBm}$	_dBm	$-2.5 \mathrm{dBm}$	dBm
$+0 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm	-3.5dBm	dBm
-1 dBm	dBm	-1 dBm	dBm	$-4.5 \mathrm{dBm}$	dBm
* Specificatio	$\pm 1.0 \mathrm{~dB}$.	* Specifica	$\pm 1.0 \mathrm{~dB}$.	* Specificatio	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+7.5 dBm	dBm		

${ }^{* *}$ Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 26.5 GHz).
Power Level Flatness (Analog Sweep)
Set Power
Max Power
Min Power
$+7.5 \mathrm{dBm}$ \qquad dBm \qquad dBm
Variation ***
\qquad dB

[^4]Table 5-3. Power Leve Accuracy and Flatness Test Record (25 of 46)

Model 68163B	Serial No.		Date	
Model 68163B (without Option 2B Step Attenuator)				
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
	Set Power	Measured Power	Set Power	Measured Power
	+ 9 dBm	dBm	+ 6 dBm	dBm
	+ 8 dBm	dBm	$+5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+7 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	dBm
	$+6 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm
	+ 5 dBm	dBm	$+2 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	+ 4 dBm	$\ldots \mathrm{dBm}$	$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+3 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
	$+2 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	-1dBm	dBm
	$+1 \mathrm{dBm}$	dBm	$-2 \mathrm{dBm}$	dBm
	+ 0 dBm	dBm	$-3 \mathrm{dBm}$	dBm
	-1 dBm	dBm	-4dBm	dBm
	$-2 \mathrm{dBm}$	dBm	$-5 \mathrm{dBm}$	dBm
	-3 dBm	$\ldots \mathrm{dBm}$	-6dBm	dBm
	* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)				
Set Power	Max Power	Min Power	V	on **
$+6 \mathrm{dBm}$	dBm	$\ldots \mathrm{dBm}$		dB
${ }^{* *}$ Maximum variation is 1.6 dB .				
Power Level Flatness (Analog Sweep)				
Set Power	Max Power	Min Power		ion ***
$+6 \mathrm{dBm}$	_dBm	dBm		dB

Table 5-3. Power Level Accuracy and Flatness Test Record (26 of 46)

Model 68163B	Serial No.		Date	
Model 68163B (with Option 2B Step Attenuator)				
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
	Set Power	Measured Power	Set Power	Measured Power
	$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm
	$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+2 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	+ 5 dBm	$\ldots \mathrm{dBm}$	$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+4 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
	$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	-1dBm	dBm
	$+2 \mathrm{dBm}$	dBm	-2 dBm	dBm
	$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$+0 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	-4dBm	$\ldots \mathrm{dBm}$
	-1dBm	$\ldots \mathrm{dBm}$	$-5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
	$-2 \mathrm{dBm}$	_dBm	-6dBm	$\ldots \mathrm{dBm}$
	$-3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	-7dBm	dBm
	-4dBm	dBm	$-8 \mathrm{dBm}$	dBm
	-5dBm	$\ldots \mathrm{dBm}$	-9 dBm	dBm
	* Specification is 1.0 dB .		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)				
Set Power	Max Power	Min Power	Va	ion **
$+3 \mathrm{dBm}$	dBm	$\ldots \mathrm{dBm}$		dB
${ }^{* *}$ Maximum variation is 1.6 dB .				
Power Level Flatness (Analog Sweep)				
Set Power	Max Power	Min Power		tion ***
$+3 \mathrm{dBm}$	dBm	dBm		dB

Table 5-3. Power Leve Accuracy and Flatness Test Record (27 of 46)

Model 68163B w/Option 15A	Serial No.		Date	
Model 68163B with Option 15A High Power (without Option 2B Step Attenuator)				
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
	Set Power	Measured Power	Set Power	Measured Power
	+ 13 dBm	_dBm	$+6 \mathrm{dBm}$	dBm
	+12 dBm	dBm	+ 5 dBm	dBm
	+11 dBm	ddBm	$+4 \mathrm{dBm}$	dBm
	+10 dBm	dBm	$+3 \mathrm{dBm}$	_dBm
	+ 9 dBm	dBm	$+2 \mathrm{dBm}$	dBm
	$+8 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm
	$+7 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
	$+6 \mathrm{dBm}$	dBm	- 1 dBm	dBm
	$+5 \mathrm{dBm}$	dBm	-2 dBm	dBm
	$+4 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm
	$+3 \mathrm{dBm}$	dBm	-4dBm	dBm
	$+2 \mathrm{dBm}$	_dBm	-5dBm	dBm
	$+1 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	dBm
	* Specificatio	$\pm 1.0 \mathrm{~dB}$.	* Specificatio	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)			
Set Power	Max Power	Min Power	Variation **
$+6 \mathrm{dBm}$	_dBm	$\ldots \mathrm{dBm}$	dB
** Maximum variation is 1.6 dB .			
Power Level Flatness (Analog Sweep)			
Set Power	Max Power	Min Power	Variation ***
+ 6 dBm	dBm	_dBm	_dB
${ }^{* * *}$ Maximum variation is $2.0 \mathrm{~dB}(2$ to 20 GHz$) ; 4.0 \mathrm{~dB}$ (20 to 40 GHz)(typical, not a specification).			

Table 5-3. Power Leve Accuracy and Flatness Test Record (28 of 46)

Model 68163B w/Option 15A	Serial No.		Date	
Model 68163B with Option 15A High Power (with Option 2B Step Attenuator)				
	Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
	Set Power	Measured Power	Set Power	Measured Power
	+11 dBm	_dBm	$+3 \mathrm{dBm}$	_dBm
	$+10 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm
	$+9 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm
	$+8 \mathrm{dBm}$	_dBm	$+0 \mathrm{dBm}$	dBm
	$+7 \mathrm{dBm}$	dBm	$-1 \mathrm{dBm}$	dBm
	$+6 \mathrm{dBm}$	_dBm	-2 dBm	dBm
	$+5 \mathrm{dBm}$	dBm	-3dBm	dBm
	$+4 \mathrm{dBm}$	dBm	-4dBm	dBm
	$+3 \mathrm{dBm}$	_dBm	-5dBm	_dBm
	$+2 \mathrm{dBm}$	dBm	-6dBm	dBm
	$+1 \mathrm{dBm}$	_dBm	$-7 \mathrm{dBm}$	dBm
	$+0 \mathrm{dBm}$	dBm	-8dBm	dBm
	-1dBm	dBm	$-9 \mathrm{dBm}$	dBm
	* Specificati	$\mathrm{s} \pm 1.0 \mathrm{~dB}$.	* Specificati	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	dBm	dB
** Maximum variation is 1.6 dB .			
Power Level Flatness (Analog Sweep)			
Set Power	Max Power	Min Power	Variation ***
$+3 \mathrm{dBm}$	dBm	dBm	dB

Table 5-3. Power Levd Accuracy and Flatness Test Record (29 of 46)

Model 68165B	Serial No.			Date	
Model 68165B (without Option 2B Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	$+9 \mathrm{dBm}$	_dBm	$+6 \mathrm{dBm}$	_dBm
+12 dBm	dBm	$+8 \mathrm{dBm}$	_dBm	$+5 \mathrm{dBm}$	dBm
+11 dBm	dBm	$+7 \mathrm{dBm}$	_dBm	+ 4 dBm	_dBm
+10 dBm	dBm	$+6 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	_dBm
+ 9 dBm	_dBm	+ 5 dBm	_dBm	$+2 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	+ 4 dBm	_dBm	$+1 \mathrm{dBm}$	_dBm
$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	-1 dBm	dBm
+ 5 dBm	dBm	$+1 \mathrm{dBm}$	dBm	-2dBm	dBm
+ 4 dBm	dBm	$+0 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	-1dBm	dBm	-4dBm	dBm
+ 2 dBm	dBm	$-2 \mathrm{dBm}$	dBm	$-5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	_dBm	$-3 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	dBm
* Specification is 1.0 dB .		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max		Min Power		ion **
+ 6 dBm		dBm	$\ldots \mathrm{dB}$		dB
${ }^{* *}$ Maximum variation is 1.6 dB .					
Power Level Flatness (Analog Sweep)					
Set Power	Max Power		Min Power	Variation ***	
+ 6 dBm	dBm		dBm		dB

Table 5-3. Power Level Accuracy and Flatness Test Record (30 of 46)

Model 68165B	Serial No.		-	Date	
	Model 68165B (with Option 2B Step Attenuator)				
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	$+7 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
+10 dBm	dBm	$+6 \mathrm{dBm}$	_dBm	+ 2 dBm	$\ldots \mathrm{dBm}$
+ 9 dBm	dBm	+ 5 dBm	_dBm	$+1 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	_dBm	$+4 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	+ 0 dBm	$\ldots \mathrm{dBm}$
$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	-1 dBm	_dBm
$+6 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	_dBm	-2 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	_dBm
$+4 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm	$-4 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	-1 dBm	_dBm	$-5 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	_dBm	-2 dBm	dBm	-6dBm	_dBm
$+1 \mathrm{dBm}$	_dBm	$-3 \mathrm{dBm}$	dBm	$-7 \mathrm{dBm}$	_dBm
+ 0 dBm	_dBm	-4dBm	_dBm	-8dBm	dBm
- 1 dBm	dBm	-5dBm	_dBm	-9 dBm	dBm
* Specificati	is $\pm 1.0 \mathrm{~dB}$.	* Specification	is $\pm 1.0 \mathrm{~dB}$.	* Specification	is $\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+3 dBm		dBm	

${ }^{* *}$ Maximum variation is 1.6 dB .

Power Level Flatness (Analog Sweep)

Set Power	Max Power	Min Power	Variation ***
+3 dBm	dBm		dBm

${ }^{* * *}$ Maximum variation is $6.0 \mathrm{~dB}(0.5$ to 20 GHz); 8.2 dB (20 to 40 GHz)(typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (31 of 46)

Model 68165B w/Option 15A S		Serial No.		Date	
Model 68165B with Option 15A High Power (without Option 2B Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+13 dBm	_dBm	+ 6 dBm	dBm
+12 dBm	dBm	+12 dBm	dBm	+ 5 dBm	dBm
+11 dBm	_dBm	+11 dBm	dBm	+ 4 dBm	_dBm
+10 dBm	dBm	+10 dBm	dBm	$+3 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	+ 9 dBm	_dBm	$+2 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	_dBm	$+1 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	$-1 \mathrm{dBm}$	dBm
$+5 \mathrm{dBm}$	dBm	+ 5 dBm	_dBm	$-2 \mathrm{dBm}$	dBm
$+4 \mathrm{dBm}$	dBm	+ 4 dBm	dBm	$-3 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	-4dBm	dBm
$+2 \mathrm{dBm}$	dBm	+ 2 dBm	dBm	$-5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	_dBm	$+1 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	dBm
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max P		Min Power		ion **
$+6 \mathrm{dBm}$		dBm	$\ldots \mathrm{dB}$		dB
** Maximum variation is 1.6 dB .					
Power Level Flatness (Analog Sweep)					
Set Power	Max Power		Min Power	Variation ***	
+ 6 dBm	dBm		dBm		dB
${ }^{* * *}$ Maximum variation is 2.0 dB (0.5 to 20 GHz); 4.0 dB (20 to 40 GHz)(typical, not a specification).					

Table 5-3. Power Level Accuracy and Flatness Test Record (32 of 46)

Model 68165B w/Option 15A S		Serial No.		Date	
Model 68165B with Option 15A High Power (with Option 2B Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	+11 dBm	dBm	$+3 \mathrm{dBm}$	dBm
$+10 \mathrm{dBm}$	dBm	+10 dBm	_dBm	$+2 \mathrm{dBm}$	dBm
+ 9 dBm	_dBm	+ 9 dBm	dBm	$+1 \mathrm{dBm}$	_dBm
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	_dBm	$+0 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	_dBm	$-1 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	$-2 \mathrm{dBm}$	dBm
+ 5 dBm	dBm	+ 5 dBm	dBm	$-3 \mathrm{dBm}$	dBm
+ 4 dBm	dBm	+ 4 dBm	dBm	-4dBm	dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$-5 \mathrm{dBm}$	dBm
+ 2 dBm	dBm	+ 2 dBm	dBm	$-6 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	-7dBm	dBm
$+0 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm	$-8 \mathrm{dBm}$	dBm
-1 dBm	dBm	$-1 \mathrm{dBm}$	dBm	$-9 \mathrm{dBm}$	dBm
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max		Min Power		ion **
$+3 \mathrm{dBm}$		dBm	dB		dB
** Maximum variation is 1.6 dB .					
Power Level Flatness (Analog Sweep)					
Set Power	Max Power		Min Power	Variation ***	
$+3 \mathrm{dBm}$	dBm		dBm		dB
*** Maximum variation is 6.0 dB (0.5 to 20 GHz); 8.2 dB (20 to 40 GHz)(typical, not a specification).					

Table 5-3. Power Level Accuracy and Flatness Test Record (33 of 46)

Model 68169	Serial No.			Date	
Model 68169B (without Option 2B Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=\mathbf{2 5 . 0} \mathbf{G H z}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+ 9 dBm	dBm	$+6 \mathrm{dBm}$	dBm
+12 dBm	dBm	$+8 \mathrm{dBm}$	dBm	+ 5 dBm	dBm
+11 dBm	dBm	$+7 \mathrm{dBm}$	_dBm	+ 4 dBm	dBm
+10 dBm	dBm	+ 6 dBm	dBm	$+3 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	+ 5 dBm	dBm	+ 2 dBm	_dBm
$+8 \mathrm{dBm}$	dBm	+ 4 dBm	_dBm	$+1 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	+ 2 dBm	_dBm	-1 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	_dBm	-2dBm	dBm
+ 4 dBm	dBm	$+0 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	-1 dBm	_dBm	-4dBm	dBm
$+2 \mathrm{dBm}$	dBm	-2dBm	dBm	$-5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	dBm
* Specification is 1.0 dB .		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max Power		Min Power	Variation **	
+ 6 dBm	dBm		dBm		dB
** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz).					
Power Level Flatness (Analog Sweep)					
Set Power	Max Power		Min Power	Variation ***	
+ 6 dBm			dBm		dB
${ }^{* * *}$ Maximum variation is 4.0 dB (0.01 to 0.05 GHz); $2.0 \mathrm{~dB}(0.05$ to 20 GHz); 4.0 dB (20 to 40 GHz)(typical, not a specification).					

Table 5-3. Power Level Accuracy and Flatness Test Record (34 of 46)

Table 5-3. Power Leve Accuracy and Flatness Test Record (35 of 46)
Model 68169B w/Option 15A Serial No. \quad Date

Model 68169B with Option 15A High Power (without Option 2B Step Attenuator)

Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=\mathbf{2 5 . 0} \mathbf{G H z}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+13 dBm	dBm	+13 dBm	dBm	$+6 \mathrm{dBm}$	_dBm
+12 dBm	_dBm	+12 dBm	dBm	+ 5 dBm	dBm
+11 dBm	dBm	+11 dBm	dBm	+ 4 dBm	dBm
$+10 \mathrm{dBm}$	dBm	+10 dBm	dBm	$+3 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	$+9 \mathrm{dBm}$	_dBm	$+2 \mathrm{dBm}$	_dBm
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$+7 \mathrm{dBm}$	dBm	+ 0 dBm	dBm
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	-1dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm	-2dBm	dBm
$+4 \mathrm{dBm}$	dBm	+ 4 dBm	dBm	$-3 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	_dBm	-4dBm	_dBm
$+2 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	$-5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	dBm
* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+6 dBm	dBm		

** Maximum variation is 4.0 dB (0.01 to 0.05 GHz); 1.6 dB (0.05 to 40 GHz).

Power Level Flatness (Analog Sweep)

Set Power
$+6 \mathrm{dBm}$
Max Power
Min Power
\qquad dBm \qquad dBm

Variation ***

\qquad
dB
*** Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 2.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 4.0 \mathrm{~dB}(20$ to 40 GHz$)$ (typical, not a specification).

Table 5-3. Power Level Accuracy and Flatness Test Record (36 of 46)

Model 68169B w/Option 15A		Serial No.		Date	
Model 68169B with Option 15A High Power (with Option 2B Step Attenuator)					
Power Level Accuracy * (CW Frequency $=1.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+11 dBm	dBm	+11 dBm	dBm	$+3 \mathrm{dBm}$	dBm
+10 dBm	dBm	+10 dBm	_dBm	$+2 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	+ 9 dBm	dBm	$+1 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	$+8 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm
+ 7 dBm	dBm	+ 7 dBm	dBm	-1 dBm	dBm
$+6 \mathrm{dBm}$	dBm	$+6 \mathrm{dBm}$	dBm	-2 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$+5 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm
$+4 \mathrm{dBm}$	dBm	$+4 \mathrm{dBm}$	dBm	-4dBm	dBm
$+3 \mathrm{dBm}$	dBm	$+3 \mathrm{dBm}$	dBm	$-5 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm	$-7 \mathrm{dBm}$	dBm
$+0 \mathrm{dBm}$	dBm	$+0 \mathrm{dBm}$	dBm	-8dBm	dBm
-1 dBm	dBm	-1 dBm	dBm	$-9 \mathrm{dBm}$	dBm
* Specificatio	$\pm 1.0 \mathrm{~dB}$.	* Specification	is $\pm 1.0 \mathrm{~dB}$.	* Speciificati	$\pm 1.0 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+3 dBm	\ldots	dBm	dBm^{2}

** Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 1.6 \mathrm{~dB}(0.05$ to 40 GHz$)$.
Power Level Flatness (Analog Sweep)

Set Power

Max Power
Min Power
Variation ***
$+3 \mathrm{dBm}$ \qquad dBm \qquad dBm \qquad dB

[^5]Table 5-3. Power Leve Accuracy and Flatness Test Record (37 of 46)

Model 68175B	Serial No.			Date	
	Model 68175B (without Option 2C Step Attenuator)				
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=\mathbf{2 5 . 0} \mathbf{G H z}$)		Power Level Accuracy * (CW Frequency $=45.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	$+2.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$+2.5 \mathrm{dBm}$	dBm
+ 9 dBm	dBm	+ 1.5 dBm	dBm	+ 1.5 dBm	dBm
$+8 \mathrm{dBm}$	dBm	$+0.5 \mathrm{dBm}$	dBm	$+0.5 \mathrm{dBm}$	diBm
$+7 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-0.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
$+6 \mathrm{dBm}$	_dBm	$-1.5 \mathrm{dBm}$	_dBm	$-1.5 \mathrm{dBm}$	dBm
$+5 \mathrm{dBm}$	dBm	$-2.5 \mathrm{dBm}$	_dBm	$-2.5 \mathrm{dBm}$	_dBm
+ 4 dBm	dBm	-3.5dBm	_dBm	-3.5 dBm	dBm
$+3 \mathrm{dBm}$	dBm	-4.5dBm	$\ldots \mathrm{dBm}$	-4.5dBm	dBm
$+2 \mathrm{dBm}$	_dBm	$-5.5 \mathrm{dBm}$	_dBm	$-5.5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	-6.5dBm	dBm	-6.5dBm	dBm
$+0 \mathrm{dBm}$	_dBm	-7.5 dBm	$\ldots \mathrm{dBm}$	$-7.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
-1 dBm	dBm	$-8.5 \mathrm{dBm}$	_dBm	$-8.5 \mathrm{dBm}$	dBm
-2 dBm	$\ldots \mathrm{dBm}$	$-9.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-9.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specificati	is $\pm 1.5 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+2.5 dBm	dBm		

${ }^{* *}$ Maximum variation is 1.6 dB (0.5 to 40 GHz); 2.2 dB (40 to 50 GHz).
Power Level Flatness (Analog Sweep)

Set Power	Max Power	Min Power	Variation ***
+2.5 dBm	dBm	dBm^{2}	

[^6]Table 5-3. Power Leve Accuracy and Flatness Test Record (38 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
-1 dBm	\ldots	dBm	

** Maximum variation is 1.6 dB (0.5 to 40 GHz); $2.2 \mathrm{~dB}(40$ to 50 GHz).
Power Level Flatness (Analog Sweep)

Set Power	Max Power	Min Power	Variation ***
-1 dBm	dBm		dBm

*** Maximum variation is $6.0 \mathrm{~dB}(0.5$ to 20 GHz); $8.2 \mathrm{~dB}(20$ to 40 GHz$) ; 10.2 \mathrm{~dB}(40$ to 50 GHz$)($ typical, not a specification).

Table 5-3. Power Level Accuracy and Flatness Test Record (39 of 46)

Model 68177	Serial No.			Date	
Model 68177B (without Option 2C Step Attenuator)					
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=45.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+ 10 dBm	dBm	+ 2.5 dBm	dBm	+ 2.5 dBm	_dBm
$+9 \mathrm{dBm}$	dBm	+ 1.5 dBm	dBm	+ 1.5 dBm	dBm
$+8 \mathrm{dBm}$	dBm	$+0.5 \mathrm{dBm}$	dBm	$+0.5 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	-0.5dBm	dBm	$-0.5 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	-1.5dBm	dBm	-1.5 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$-2.5 \mathrm{dBm}$	_dBm	$-2.5 \mathrm{dBm}$	dBm
$+4 \mathrm{dBm}$	dBm	-3.5dBm	dBm	-3.5dBm	dBm
$+3 \mathrm{dBm}$	dBm	$-4.5 \mathrm{dBm}$	_dBm	$-4.5 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	dBm	$-5.5 \mathrm{dBm}$	_dBm	$-5.5 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	-6.5dBm	dBm	-6.5dBm	dBm
$+0 \mathrm{dBm}$	dBm	$-7.5 \mathrm{dBm}$	dBm	$-7.5 \mathrm{dBm}$	dBm
-1dBm	dBm	$-8.5 \mathrm{dBm}$	_dBm	$-8.5 \mathrm{dBm}$	dBm
-2dBm	_dBm	$-9.5 \mathrm{dBm}$	dBm	$-9.5 \mathrm{dBm}$	_dBm
* Specificatio	$\pm 1.0 \mathrm{~dB}$.	* Specificatio	$\pm 1.0 \mathrm{~dB}$.	* Specificati	$\pm 1.5 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power
$+2.5 \mathrm{dBm}$

Max Power

** Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 1.6 \mathrm{~dB}(0.05$ to 40 GHz$) ; 2.2 \mathrm{~dB}(40$ to 50 GHz$)$.

Power Level Flatness (Analog Sweep)

Set Power
$+2.5 \mathrm{dBm}$
dBm

Min Power
dBm

Min Power
\qquad dBm

Variation ***
\qquad dB
*** Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 2.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 4.0 \mathrm{~dB}(20$ to 40 GHz$) ; 5.0 \mathrm{~dB}(40$ to 50 GHz)(typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (40 of 46)

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
-1 dBm	dBm		

** Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 1.6 \mathrm{~dB}(0.05$ to 40 GHz$) ; 2.2 \mathrm{~dB}(40$ to 50 GHz$)$.

Power Level Flatness (Analog Sweep)

Set Power

Max Power

$-1 \mathrm{dBm}$ \qquad dBm

Min Power
\qquad dBm
*** Maximum variation is $7.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 6.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 8.2 \mathrm{~dB}(20$ to 40 GHz$) ; 10.2 \mathrm{~dB}(40$ to 50 GHz)(typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (41 of 46)

Model 68185B S		Serial No.		Date	
Model 68185B (without Option 2D Step Attenuator)					
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=50.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	$+2.5 \mathrm{dBm}$	dBm	+ 2 dBm	$\ldots \mathrm{dBm}$
+ 9 dBm	dBm	$+1.5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	_dBm	$+0.5 \mathrm{dBm}$	dBm	0 dBm	_dBm
$+7 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	dBm	$-1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
+ 6 dBm	dBm	-1.5dBm	dBm	-2 dBm	dBm
$+5 \mathrm{dBm}$	dBm	$-2.5 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm
$+4 \mathrm{dBm}$	dBm	$-3.5 \mathrm{dBm}$	_dBm	-4dBm	_dBm
$+3 \mathrm{dBm}$	dBm	-4.5 dBm	dBm	- 5 dBm	dBm
$+2 \mathrm{dBm}$	dBm	-5.5dBm	dBm	$-6 \mathrm{dBm}$	_dBm
$+1 \mathrm{dBm}$	dBm	$-6.5 \mathrm{dBm}$	_dBm	-7dBm	_dBm
$+0 \mathrm{dBm}$	dBm	$-7.5 \mathrm{dBm}$	dBm	-8dBm	dBm
$-1 \mathrm{dBm}$	dBm	$-8.5 \mathrm{dBm}$	_dBm	$-9 \mathrm{dBm}$	_dBm
-2dBm	$\ldots \mathrm{dBm}$	$-9.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	- 10 dBm	$\ldots \mathrm{dBm}$
* Specificat	s 1.0 dB .	* Specificati	$\pm 1.0 \mathrm{~dB}$.	* Specificati	$\pm 1.5 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
+2 dBm	dBm	dBm^{2}	dB

** Maximum variation is $1.6 \mathrm{~dB}(0.5$ to 40 GHz$) ; 2.2 \mathrm{~dB}(40$ to 60 GHz$)$.

Power Level Flatness (Analog Sweep)

Set Power
$+2 \mathrm{dBm}$

Max Power

\qquad dBm

Min Power
\qquad dBm

Variation ***
\qquad dB
${ }^{* * *}$ Maximum variation is $2.0 \mathrm{~dB}(0.5$ to 20 GHz$) ; 4.0 \mathrm{~dB}(20$ to 40 GHz$) ; 5.0 \mathrm{~dB}$ (40 to 60 GHz)(typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (42 of 46)

Model 68185B	Serial No.			Date	
Model 68185B (with Option 2D Step Attenuator)					
Power Level Accuracy * (CW Frequency = 5.0 GHz)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=50.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+ 8.5 dBm	dBm	$+0 \mathrm{dBm}$	dBm	-1.5 dBm	dBm
+ 7.5 dBm	_dBm	-1dBm	$\ldots \mathrm{dBm}$	$-2.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
+ 6.5 dBm	dBm	-2dBm	dBm	-3.5 dBm	dBm
+ 5.5 dBm	dBm	$-3 \mathrm{dBm}$	dBm	$-4.5 \mathrm{dBm}$	dBm
+ 4.5 dBm	dBm	-4dBm	_dBm	$-5.5 \mathrm{dBm}$	_dBm
+ 3.5 dBm	dBm	$-5 \mathrm{dBm}$	dBm	$-6.5 \mathrm{dBm}$	dBm
+ 2.5 dBm	dBm	$-6 \mathrm{dBm}$	dBm	$-7.5 \mathrm{dBm}$	dBm
+ 1.5 dBm	dBm	$-7 \mathrm{dBm}$	dBm	-8.5 dBm	dBm
+ 0.5 dBm	dBm	$-8 \mathrm{dBm}$	_dBm	$-9.5 \mathrm{dBm}$	_dBm
$-0.5 \mathrm{dBm}$	dBm	-9 dBm	dBm	$-10.5 \mathrm{dBm}$	dBm
-1.5 dBm	dBm	-10 dBm	_dBm	-11.5 dBm	dBm
-2.5 dBm	dBm	-11 dBm	$\ldots \mathrm{dBm}$	$-12.5 \mathrm{dBm}$	dBm
$-3.5 \mathrm{dBm}$	dBm	-12 dBm	dBm	$-13.5 \mathrm{dBm}$	_dBm
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.5 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max Power		Min Power	Variation **	
-2dBm	dBm		dBm	dB	

Power Level Flatness (Analog Sweep)			
Set Power	Max Power	Min Power	Variation ***
-2dBm	dBm	dBm	dB

[^7]Table 5-3. Power Leve Accuracy and Flatness Test Record (43 of 46)

Model 68187B	Serial No.			Date	
	Model 68187B (without Option 2D Step Attenuator)				
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=50.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	$+2.5 \mathrm{dBm}$	dBm	$+2 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
$+9 \mathrm{dBm}$	dBm	$+1.5 \mathrm{dBm}$	dBm	$+1 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
$+8 \mathrm{dBm}$	_dBm	$+0.5 \mathrm{dBm}$	dBm	0 dBm	_dBm
$+7 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-0.5 \mathrm{dBm}$	_dBm	- 1 dBm	$\ldots \mathrm{dBm}$
$+6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	$-1.5 \mathrm{dBm}$	dBm	$-2 \mathrm{dBm}$	dBm
$+5 \mathrm{dBm}$	_dBm	-2.5dBm	_dBm	$-3 \mathrm{dBm}$	_dBm
$+4 \mathrm{dBm}$	dBm	$-3.5 \mathrm{dBm}$	_dBm	-4dBm	$\ldots \mathrm{dBm}$
$+3 \mathrm{dBm}$	_dBm	-4.5 dBm	dBm	$-5 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	_dBm	- 5.5 dBm	_dBm	-6dBm	$\ldots \mathrm{dBm}$
$+1 \mathrm{dBm}$	dBm	$-6.5 \mathrm{dBm}$	dBm	-7dBm	$\ldots \mathrm{dBm}$
$+0 \mathrm{dBm}$	dBm	$-7.5 \mathrm{dBm}$	dBm	$-8 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
-1 dBm	_dBm	-8.5dBm	dBm	-9 dBm	dBm
-2dBm	dBm	-9.5 dBm	$\ldots \mathrm{dBm}$	- 10 dBm	$\ldots \mathrm{dBm}$
* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.0 \mathrm{~dB}$.		* Specification is $\pm 1.5 \mathrm{~dB}$.	
Power Level Flatness (Step Sweep)					
Set Power	Max	er	Min Power	Va	ion **
$+2 \mathrm{dBm}$		dBm	_dB		dB
${ }^{* *}$ Maximum variation is 4.0 dB (0.01 to 0.05 GHz); $1.6 \mathrm{~dB}(0.05$ to 40 GHz$) ; 2.2 \mathrm{~dB}$ (40 to 60 GHz).					
Power Level Flatness (Analog Sweep)					
Set Power	Max	er	Min Power		tion ***
+ 2 dBm	-	dBm	d dB	-	dB
${ }^{* * *}$ Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 2.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 4.0 \mathrm{~dB}(20$ to 40 GHz$) ; 5.0 \mathrm{~dB}(40$ to 60 GHz)(typical, not a specification).					

Table 5-3. Power Level Accuracy and Flatness Test Record (44 of 46)

Model 68187B S		Serial No.		Date	
Model 68187B (with Option 2D Step Attenuator)					
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=50.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+ 8.5 dBm	_dBm	$+0 \mathrm{dBm}$	dBm	-1.5dBm	_dBm
+ 7.5 dBm	dBm	-1dBm	_dBm	$-2.5 \mathrm{dBm}$	dBm
$+6.5 \mathrm{dBm}$	dBm	-2 dBm	dBm	$-3.5 \mathrm{dBm}$	dBm
+ 5.5 dBm	dBm	$-3 \mathrm{dBm}$	dBm	$-4.5 \mathrm{dBm}$	dBm
+ 4.5 dBm	dBm	-4dBm	dBm	$-5.5 \mathrm{dBm}$	dBm
+ 3.5 dBm	dBm	-5dBm	dBm	$-6.5 \mathrm{dBm}$	dBm
+ 2.5 dBm	dBm	-6dBm	dBm	$-7.5 \mathrm{dBm}$	dBm
+ 1.5 dBm	dBm	-7dBm	dBm	-8.5 dBm	dBm
+ 0.5 dBm	dBm	$-8 \mathrm{dBm}$	dBm	$-9.5 \mathrm{dBm}$	dBm
-0.5dBm	dBm	-9 dBm	dBm	$-10.5 \mathrm{dBm}$	dBm
-1.5 dBm	dBm	-10 dBm	dBm	-11.5 dBm	dBm
-2.5dBm	dBm	-11 dBm	dBm	$-12.5 \mathrm{dBm}$	dBm
$-3.5 \mathrm{dBm}$	dBm	-12 dBm	dBm	$-13.5 \mathrm{dBm}$	dBm
* Specificati	$\pm 1.0 \mathrm{~dB}$.	* Specification	is $\pm .0 \mathrm{~dB}$.	* Specificati	$\pm 1.5 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
-2 dBm	dBm	$\mathrm{dBm}^{\text {* }}$	

${ }^{* *}$ Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 1.6 \mathrm{~dB}(0.05$ to 40 GHz$) ; 2.2 \mathrm{~dB}(40$ to 60 GHz$)$.

Power Level Flatness (Analog Sweep)

Set Power	Max Power	Min Power	Variation ***
-2 dBm	dBm		dBm^{2}

[^8]Table 5-3. Power Level Accuracy and Flatness Test Record (45 of 46)

Model 68195	Serial No.			Date	
Model 68195B					
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=50.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	$+2.5 \mathrm{dBm}$	dBm	0 dBm	$\ldots \mathrm{dBm}$
+ 9 dBm	_dBm	+ 1.5 dBm	dBm	-1 dBm	dBm
$+8 \mathrm{dBm}$	dBm	+ 0.5 dBm	dBm	-2 dBm	_dBm
$+7 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	_dBm	$-3 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
+ 6 dBm	dBm	-1.5 dBm	dBm	-4dBm	dBm
+ 5 dBm	_dBm	-2.5dBm	_dBm	$-5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
+ 4 dBm	_dBm	$-3.5 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
$+3 \mathrm{dBm}$	_dBm	-4.5 dBm	dBm	-7dBm	dBm
$+2 \mathrm{dBm}$	_dBm	$-5.5 \mathrm{dBm}$	_dBm	$-8 \mathrm{dBm}$	$\ldots \mathrm{dBm}$
$+1 \mathrm{dBm}$	_dBm	$-6.5 \mathrm{dBm}$	dBm	-9 dBm	dBm
+ 0 dBm	dBm	-7.5 dBm	_dBm	- 10 dBm	dBm
-1 dBm	_dBm	$-8.5 \mathrm{dBm}$	dBm	- 11 dBm	dBm
-2 dBm	_dBm	$-9.5 \mathrm{dBm}$	$\ldots \mathrm{dBm}$	- 12 dBm	$\ldots \mathrm{dBm}$
* Specificati	is $\pm 1.0 \mathrm{~dB}$.	* Specificati	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.5 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
-2 dBm	$\ldots \quad \mathrm{dBm}$	CBm^{2}	

** Maximum variation is $1.6 \mathrm{~dB}(0.5$ to 40 GHz$) ; 2.2 \mathrm{~dB}(40$ to 65 GHz$)$.
Power Level Flatness (Analog Sweep)

Set Power	Max Power	Min Power	Variation ***
-2 dBm	$\quad \mathrm{dBm}$	dBm^{2}	dB

${ }^{* * *}$ Maximum variation is $2.0 \mathrm{~dB}(0.5$ to 20 GHz); $4.0 \mathrm{~dB}(20$ to 40 GHz$) ; 5.0 \mathrm{~dB}(40$ to 65 GHz$)$ (typical, not a specification).

Table 5-3. Power Leve Accuracy and Flatness Test Record (46 of 46)

Model 68197	Serial No.			Date	
Model 68197B					
Power Level Accuracy * (CW Frequency $=5.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=25.0 \mathrm{GHz}$)		Power Level Accuracy * (CW Frequency $=50.0 \mathrm{GHz}$)	
Set Power	Measured Power	Set Power	Measured Power	Set Power	Measured Power
+10 dBm	dBm	+ 2.5 dBm	dBm	0 dBm	dBm
+ 9 dBm	_dBm	+ 1.5 dBm	dBm	$-1 \mathrm{dBm}$	dBm
$+8 \mathrm{dBm}$	dBm	$+0.5 \mathrm{dBm}$	dBm	$-2 \mathrm{dBm}$	dBm
$+7 \mathrm{dBm}$	dBm	$-0.5 \mathrm{dBm}$	dBm	$-3 \mathrm{dBm}$	dBm
$+6 \mathrm{dBm}$	dBm	$-1.5 \mathrm{dBm}$	_dBm	-4dBm	dBm
$+5 \mathrm{dBm}$	dBm	-2.5 dBm	dBm	$-5 \mathrm{dBm}$	dBm
+ 4 dBm	dBm	$-3.5 \mathrm{dBm}$	dBm	$-6 \mathrm{dBm}$	dBm
$+3 \mathrm{dBm}$	dBm	-4.5 dBm	dBm	$-7 \mathrm{dBm}$	dBm
$+2 \mathrm{dBm}$	dBm	$-5.5 \mathrm{dBm}$	_dBm	$-8 \mathrm{dBm}$	dBm
$+1 \mathrm{dBm}$	dBm	$-6.5 \mathrm{dBm}$	dBm	-9 dBm	dBm
$+0 \mathrm{dBm}$	dBm	$-7.5 \mathrm{dBm}$	dBm	- 10 dBm	dBm
$-1 \mathrm{dBm}$	dBm	-8.5 dBm	dBm	- 11 dBm	dBm
-2dBm	dBm	$-9.5 \mathrm{dBm}$	dBm	- 12 dBm	dBm
* Specification	1.0 dB .	* Specification	$\pm 1.0 \mathrm{~dB}$.	* Specification	$\pm 1.5 \mathrm{~dB}$.

Power Level Flatness (Step Sweep)

Set Power	Max Power	Min Power	Variation **
-2 dBm	$\ldots \quad \mathrm{dBm}$	CBm^{2}	

${ }^{* *}$ Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 1.6 \mathrm{~dB}(0.05$ to 40 GHz$) ; 2.2 \mathrm{~dB}(40$ to 65 GHz$)$.

Power Level Flatness (Analog Sweep)

Set Power	Max Power	Min Power	Variation ***
-2 dBm	$\quad \mathrm{dBm}$	$\mathrm{dBm}^{\mathrm{dB}}$	

${ }^{* * *}$ Maximum variation is $4.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 2.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 4.0 \mathrm{~dB}(20$ to 40 GHz$) ; 5.0 \mathrm{~dB}(40$ to 65 GHz)(typical, not a specification).

Chapter 6
 Operator Maintenance

Table of Contents

6-1 INTRODUCTION 6-3
6-2 ERROR AND WARNING/STATUS MESSAGES. . . 6-3
Self-Test Error Messages 6-3
Normal Operation Error and Warning/StatusMessages.6-8
6-3 TROUBLESHOOTING 6-10
6-4 ROUTINE MAINTENANCE 6-13
Cleaning the F an Filter. 6-13
Cleaning the Data Display 6-13
Replacing the Line Fuse 6-14

Chapter 6 Operator Maintenance

6-1 introduction

6-2 error and
 WARNING/STATUS
 MESSAGES

This chapter provides the information necessary for operator maintenance of the sweep generator. Operator maintenance is limited to troubleshooting and repairs that can be made without removing the instrument covers.

During normal operation, the 681XXB generates error messages to indicate internal malfunctions, abnormal signal generator operations, or invalid signal inputs or data entries. It also displays warning messages to alert the operator to conditions that could result in inaccurate sweep generator output. In addition, status messages are displayed to remind the operator of current menu selections or settings.

Self-Test Error Messages

The 681XXB firmware includes internal diagnostics that self-test the instrument. These self-test diagnostics perform a brief go/no-go test of most of the instrument PCBs and other internal assemblies.

CAUTION

During self-test with RF OUTPUT set to ON, the output power level is set to 0 dBm . Always disconnect sensitive equipment from the unit before performing self-test.

You can perform an instrument self-test at any time during normal operation by pressing SYSTEM and then Selftest .

If the sweep generator fails self-test, an error message(s) is displayed on the front panel data display. These error messages describe the malfunction and, in most cases, provide an indication of what has failed. Table 6-1, next page, is a summary listing of the self-test error messages. Included for each is a description of the probable cause(s), whether or not the 681XXB is still operable, and if operable,what operational degradation can be expected.

Abstract

—— WARNING Self-test error messages normally indicate the failure of an internal component or assembly of the CW generator. There are no operator serviceable components inside. Refer servicing of the instrument to qualified service technicians.

To prevent the risk of electrical shock or damage to precision components, do not remove the equipment covers.

Table 6-1. Self-Test Error Messages (1 of 4)

Error Message	Description/Remarks
Error 100 DVM Ground Offset Failed	Indicates a calibration-related problem. Do Not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 101 DVM Positive 10V Reference	Indicates either a calibration-related problem or a defective+10 Volt reference. Do not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 102	Indicates either a calibration-related problem or a defective -10 Volt reference . DVM Negative 10V Reference Do not Attempt to Operate! Refer the instrument to a qualified service
technician.	

Table 6-1. Self-Test Error Messages (2 of 4)

Error Message	Description/Remarks
Error 111 Fine Loop Osc Failed	Indicates one or more of the oscillators within the fine loop is not phase-locked. The 681XXB is still operable but the accuracy and stability of frequency outputs are greatly reduced.
Error 112 Coarse Loop Osc Failed	Indicates the coarse loop oscillator is not phase-locked. The 681XXB is still operable but the accuracy and stability of the frequency outputs are greatly reduced.
Error 113 Yig Loop Osc Failed	Indicates the YIG loop is not phase-locked. The 681XXB is still operable but the accuracy and stability of the frequency outputs are greatly reduced.
Error 114 Down Converter LO not Locked	Indicates the local oscillator in the down converter assembly is not phase-locked. The 681XXB is still operable but the accuracy and stability of frequency outputs below 2 GHz is greatly reduced.
Error 115 Not Locked Indicator Failed	Indicates failure of the not phase-locked indicator circuit. The 681XXB is still operable but an error message will not appear on the data display when the output frequency is not phase-locked.
Error 116 FM Loop Gain Check Failed	Indicates FM loop has failed or the loop gain is out of tolerance. The 681XXB is still operable but frequency accuracy and stability are degraded.
Error 117 Linearizer Check Failed	Indicates a failure of the Linearizer DAC on the A12 PCB. The 681XXB is still operable but frequency accuracy of the RF output is degraded.
Error 118 Switchpoint DAC Failed	Indicates a failure of the Switchpoint DAC on the A12 PCB. The 681XXB will not produce analog sweeps but should operate normally in CW and step sweep modes.
Error 119 Center Frequency Circuits Failed	Indicates a failure of the center frequency circuitry on the A12 PCB. Do Not Attempt to Operate! Refer the instrument to a qualified service technician.
Error 120- Delta-F Circuits Failed	Indicates a failure of the Δ F Width DAC on the A12 PCB. The 681XXB will not generate $\Delta \mathrm{F}$ analog sweeps but should produce $\Delta \mathrm{F}$ step sweeps.
Error 121 Unleveled Indicator Failed	Indicates failure of the not leveled detector circuitry on the A10 PCB. The 681XXB is still operable but a warning message will not appear when the RF output goes unleveled.
Error 122 Level Reference Failed	Indicates a failure of the level reference circuitry on the A10 PCB. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 123 Detector Log Amp Failed	Indicates a failure of the level detector log amplifier circuitry on the A10 PCB. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 124 Full Band Unlocked and Unleveled	Indicates a failure of both YIG-tuned oscillators. Do Not Attempt to Operate! Refer the instrument to a qualified service techician.

Table 6-1. Self-Test Error Messages (3 of 4)

Error Message	Description/Remarks
Error 125 8.4-20 GHz Unlocked and Unleveled	Indicates a failure of the 8.4 to 20 GHz YIG-tuned oscillator. Do Not Attempt to Operate! Refer the instrument to a qualified service techician.
Error 126 2-8.4 GHz Unlocked and Unleveled	Indicates a failure of the 2 to 8.4 GHz YIG-tuned oscillator. Do Not Attempt to Operate! Refer the instrument to a qualified service techician.
Error 127 Detector Input Circuit Failed	Indicates a failure of the level detector input circuitry on the A10 PCB. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 128 . 01 - 2 GHz Unleveled	Indicates a failure of the Down Converter leveling circuitry. The 681XXB operates normally but will have unleveled RF output in the $0.01-2 \mathrm{GHz}$ frequency range.
Error 129 Switched Filter or Level Detector Failed	Indicates a failure of either the switched filter or level detector circuitry. The 681XXB may or may not produce an RF output. Use caution and always determine the output power level when operating the 681 XXB in this condition.
Error 130 2-3.3 GH Switched Filter	Indicates a failure in the 2-3.3 GHz switched filter path within the switched filter assembly. The 681XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 131 3.3-5.5 GH Switched Filter	Indicates a failure in the 3.3-5.5 GHz switched filter path within the switched filter assembly. The 681XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 132 5.5-8.4 GH Switched Filter	Indicates a failure in the $5.5-8.4 \mathrm{GHz}$ switched filter path within the switched filter assembly. The 681XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 133 8.4 - 13.25 GH Switched Filter	Indicates a failure in the $8.4-13.25 \mathrm{GHz}$ switched filter path within the switched filter assembly. The 681XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 134 13.25-20 GH Switched Filter	Indicates a failure in the $13.25-20 \mathrm{GHz}$ switched filter path within the switched filter assembly. The 681XXB may or may not produce an RF output in this frequency range. Use caution and always determine the output power level when operating the 681XXB in this condition.
Error 135 Modulator or Driver Failed	Indicates a failure of the modulator in the switched filter assembly or the modulator driver circuitry on the A9 PCB. The 681XXB may or may not produce an RF output. Use caution and always determine the output power level when operating the 681XXB in this condition.

Table 6-1. Self-Test Error Messages (4 of 4)

Error Message	Description/Remarks
Error 138 SDM Unit or Driver Failed	Indicates a failure of the switched doubler module (SDM) or SDM bias regulator circuitry on the A14 PCB. The 681XXB is still operable but it will not produce an RF output in the $20-40 \mathrm{GHz}$ frequency range.
Error 139 32-40 GHz SDM Section Failed	Indicates a failure in the 32-40 GHz switched doubler filter path within the SDM. The 681XXB is still operable but it will not produce an RF output in the 32 40 GHz frequency range.
Error 140 25-32 GHz SDM Section Failed	Indicates a failure in the 25-32 GHz switched doubler filter path within the SDM. The 681XXB is still operable but it will not produce an RF output in the 25 32 GHz frequency range.
Error 141 20-25 GHz SDM Section Failed	Indicates a failure in the $20-25 \mathrm{GHz}$ switched doubler filter path within the SDM. The 681XXB is still operable but it will not produce an RF output in the 20 25 GHz frequency range.
Error 142 Sample and Hold Circuit Failed	Indicates a failure of the sample and hold circuitry on the A10 PCB. The 681XXB still operates normally but the RF output may be unleveled during square wave modulation.
Error 143 Slope DAC Failed	Indicates a failure of the level slope DAC on the A10 PCB. The 681XXB still operates normally but RF output level flatness may be affected during analog frequency sweeps.
Error 144 RF was Off when Selftest started. Some tests were not performed.	Indicates that some self-tests were not performed because RF Output was selected OFF on the 681XXB front panel. Press the OUTPUT key to turn RF Output ON and run the instrument self-test again.

Normal
Operation
Error and
Warning/
Status
Messages

When an abnormal condition is detected during operation, the 681XXB displays an error message to indicate that the output is abnormal or that a signal input or data entry is invalid. It also displays warning messages to alert the operator to conditions that could cause an inaccurate signal generator output. Status messages to remind the operator of current menu selections or settings are also generated.

Table 6-2 is a summary list of possible error messages that can be displayed during normal operations. Table 6-3 is a summary list of possible warning/status messages.

Table 6-2. Possible Error Messages during Normal Operations

Error Message	Description
ERROR	Displayed (on the frequency mode title bar) when (1) the output frequency is not phase-locked or (2) an invalid entry causes a frequency range error.
LOCK ERROR	Displayed (in the frequency parameters area) when the output frequency is not phase-locked. The frequency accuracy and stability of the RF output is greatly reduced. Normally caused by an internal component failure. Run self-test to verify malfunction.
RANGE	Displayed (in the frequency parameters area) when (1) the analog sweep start frequency entered is greater than the stop frequency, (2) the dF value entered results in a sweep outside the range of the instrument, (3) the step size value entered is greater than the sweep range, or (4) the number of steps entered results in a step size of less than 1 kHz (0.1 Hz with Option 11) or 0.1 dB. Entering valid values usually clears the error.
ERR	Displayed (in the modulation status area) when either the external AM modulating signal or the external FM modulating signal exceeds the input voltage range. In addition, the message "Reduce AM (FM) Input Level" appears at the bottom of the AM (FM) status display. AM (FM) will be turned off until the modulating signal is in the input voltage range.
SLAVE	Displayed (in the frequency parameters area of the Master 68XXXB) during master-slave operation in VNA mode when the slave frequency offset value entered results in a CW frequency or frequency sweep outside the range of the slave 68XXXB. Entering a valid offset value clears the error.

Table 6-3. Possible Warning/ Status Messages during Normal Operation

Warning/Status Message	Description
OVN COLD	This warning message indicates that the 100 MHz Crystal oven (or the 10 MHz Crystal oven if Option 16 is installed) has not reached operating temperature. Normally displayed during a cold start of the sweep generator. If the message is displayed during normal operation, it could indicate a malfunction. Run self-test to verify.
UNLEVELED	Displayed when the RF output goes unleveled. Normally caused by exceeding the specified leveled-power rating. Reducing the power level usually clears the warning message. If the warning message is displayed only when AM is selected ON, the modulating signal may be driving the RF output unleveled. Reducing the modulating signal or adjusting the power level usually clears the warning.
UNLOCKED	When Unlocked Narrow FM or Unlocked Wide FM is selected ON, this warning message appears indicating that the instrument is not phase-locked during this FM mode of operation.
EXT REF	This status message indicates that an external 10 MHz signal is being used as the reference signal for the 681 XXB.
OFFSET	This status message indicates that a constant (offset) has been applied to the displayed power level.
SLOPE	This status message indicates that a power slope correction has been applied to the ALC.
USER 1... 5	This status message indicates that a user level flatness correction power-offset table has been applied to the ALC.
SS MODE	This status message indicates that the 681XXB has been placed in a source lock mode for operation with a 360B Vector Network Analyzer.

Table 6-4 provides procedures for troubleshooting common malfunctions encountered during operation of the sweep generator. Included are procedures for troubleshooting faults that do not produce error messages, such as, failure to power up and unexpected shutdown.

Table 6-4. Troubleshooting (1 of 3)

Sweep Generator will not turn on (OPERATE light is OFF)

Normal Operation: When the 681XXB is connected to the power source, the OPERATE light should illuminate and the instrument should power up.

Step 1 Disconnect the 681XXB from the power source, then check the line fuse on the rear panel.

- If the fuse is defective, replace (see page 6-14).
- If the fuse is good, go to the next step.

Step 2 Check to see if power is available at the power receptacle.

- If not, move to a working receptacle.
- If power is available, go to the next step.

Step 3 Check the power cable.

- If defective, replace.
- If good, call a service technician.

Sweep Generator will not turn on (OPERATE light is ON)

Normal Operation: When the 681XXB is connected to the power source, the OPERATE light should illuminate and the instrument should power up.

- If the OPERATE light illuminates but the unit fails to power up, the 681XXB has an internal component failure. Call a service technician.

Table 6-4. Troubleshooting (2 of 3)

Sweep Generator Quits During Operation (OPERATE light remains on)

Trouble Description: The sweep generator operates for some time, then shuts down (OPERATE light remains on). After a short period, the sweep generator resumes normal operation. This is an indication that the 681XXB has reached an excessive operating temperature.

Step 1 Check that the fan is still operating during the time that the instrument is shut down.

- If the fan is still operating, clean the air filter (see page 6-13).
- If the fan is not operating, call a service technician.

LOCK ERROR is Displayed

Trouble Description: This message is displayed in the frequency parameters area to indicate that the output frequency is not phaselocked. It is normally caused by an internal component failure.

Step 1 Perform a self-test of the sweep generator by pressing the System Menu soft-key Selftest .

- If self-test does not result in an error message(s), resume normal operation.
- If an error message(s) is displayed, call a service technician.

Table 6-4. Troubleshooting (3 of 3)

UNLEVELED is Displayed

Trouble Description: This message is displayed to indicate that the RF output is unleveled.

Step 1 Check that the output power does not exceed the specified leveled-power rating and that the RF OUTPUT connector is terminated into a 50Ω load.
\square Reduce the power level to not exceed the specified leveled-power rating or terminate the RF OUTPUT connector with a 50Ω load.

- If error message remains displayed, call a service technician.

RANGE is Displayed

Trouble Description: This message is displayed in the frequency parameters area to indicate that (1) the analog sweep start frequency entered is greater than the stop frequency, (2) the ΔF value entered results in a sweep outside the range of the instrument, (3) the step size value entered is greater than the sweep range, or (4) the number of steps entered results in a step size of less than $1 \mathrm{kHz}(0.1 \mathrm{~Hz}$ with Option 11) or 0.1 dB .

Step 1 Check that (1) the analog sweep start frequency entered is not greater than the stop frequency, (2) the dF value entered does not try to set the frequency sweep outside the range of the sweep generator, (3) the step size entered is not greater than F2 minus F 1, or (4) the number of steps entered does not result in a step size that is smaller than the resolution of the instrument.

- E nter a valid sweep start frequency, dF value, step size, or number of steps.
- If the error message remains displayed, call a service technician.

Routine maintenance that can be performed by the operator consists of cleaning the fan filter, cleaning the data display, and replacing a defective line fuse.

Cleaning the The sweep generator must always receive adequate Fan Filter ventilation. A blocked fan filter can cause the instrument to overheat and shut down. Check and clean the rear panel fan honeycomb filter periodically. Clean the fan honeycomb filter more frequently in dusty environments. Clean the filter as follows:

Step 1 Remove the filter guard from the rear panel by pulling out on the four panel fasteners holding them in place (Figure 6-1).

Step 2 Vacuum the honeycomb filter to clean it.
Step 3 Install the filter guard back on the rear panel.

Step 4 Press in on the panel fasteners to secure the filter guard to the rear panel.
Panel (4)
Fastener (4)
Filter
Guard

Figure 6-1. Removing/ Replacing the Fan Filter

Cleaning the The data display of the sweep generator is protected Data Display by a plastic display filter. To clean the display filter, use mild soap or detergent and water, or a commercial window cleaner. When cleaning use a soft, lint-
free cloth. Do not use abrasive cleaners, tissues, or paper towels which can scratch the plastic surface.

Replacing the Line Fuse

The value of the line fuse used in the 681XXB is determined by the line voltage selection-a 5A line fuse for 110 Vac line voltage; a 2.5 A line fuse for 220 Vac line voltage. These line fuse values are printed on the rear panel next to the fuse holder.

\longrightarrow WARNING

Before changing the fuse, always remove the power cord from the power outlet. There is the risk of receiving a fatal electric shock if the fuse is replaced with the power cord connected.

Al ways use a new fuse of the type and rating specified by the fuse markings on the rear panel of the instrument.

Step 1 Disconnect the 681XXB from the power source.

Step 2 Using a small flat-blade screwdriver, turn the fuse cap counter-clockwise and remove the fuse holder.

Step 3 Replace the fuse in the fuse holder.
Step 4 Install the fuse holder in the rear panel. Using the screwdriver, rotate the fuse cap clockwise to secure the fuse holder in place.

Step 5 Reconnect the sweep generator to the power source.
\qquad

Figure 6-2. Replacing the LineF use

Chapter 7 Use With Other Instruments

Table of Contents

7-1 INTRODUCTION 7-3
7-2
MASTER-SLAVE OPERATION 7-4
Connecting the 68XXXBs 7-4
Initiating Master-Slave Operation 7-5
Master-Slave Operation 7-7
Master-Slave Operation in VNA M ode 7-7
Terminating Master-Slave Operation 7-9
7-3
USE WITH A 562 SNA 7-10
Connecting the 681XXB to the 562 7-10
7-4 USE WITH A 360B VNA. 7-12
Connecting the 681XXB to the 360B 7-12
Modes of Operation 7-13
Source Lock Mode 7-13
Tracking Mode 7-15
7-5 USE WITH A HP8757D SNA (681XXB M odels with Firmware Version 3.45 and above; 681X5B Models with Firmware Version 1.33 and above) 7-17
Connecting the 681XXB to the HP8757D 7-17
Setting up the 681XXB 7-18
Initiating HP8757D SNA Operation 7-19

Chapter 7 Use With Other Instruments

7-1 introduction

This chapter provides information and instructions for using the Se ries 681XXB Synthesized Sweep Generator with other ANRITSU instuments. It contains the following:

- Instructions for interconnecting and operating any two 68XXXBs in a master-slave configuration.
- Instructions for connecting the 681XXB to a ANRITSU Model 562 Scalar Network Analyzer so that it can be used as a signal source for the analyzer.
- Instructions for connecting the 681XXB to a ANRITSU Model 360B Vector Network Analyzer and configuring the sweep generator so that it can be used as a signal source for the analyzer.
- Instructions for connecting 681XXB models with Firmware Version 3.45 and above (681X5B models with Firmware Version 1.33 and above) to a Hewlett Packard M odel 8757D Scalar Network Analyzer and setting up the sweep generator so that it can be used as a signal source for the anlyzer.

Master-slave operation consists of connecting any two 68XXXBs together and configuring them so that they produce CW and synchronized, swept output signals at an operator-selectable frequency offset. One 68XXXB (the Master) controls the other (the Slave) via interface cables between their rear panel AUX I/O and SERIAL I/O connectors. The two units are phase-locked together by connecting them to the same 10 MHz reference time base.

Figure 7-1. 68XXXB Configuration for Master-SlaveOperation

Connecting the 68XXXBs

When connecting two 68XXXBs together for Master-Slaveoperations always use a ANRITSU MasterSlave interface cable set, Part No. ND36329.

If a Model 562 Scalar Network Ana-master-slave configuration, (1) connect the AUX I/O cable end labeled "SNA" to the rear panel AUX I/O connector on the 562 SNA and (2) connect a dedicated system bus cable (P/N 2100-1) between the Master 68XXXB rear panel IEEE-488 GPIB connector and the 562 SNA nector.

Connect the two 68XXXBs, shown in Figure 7-1, as follows:

Step 1 Connect the 3-port AUX I/O cable end labeled "MASTER" to the rear panel AUX I/O connector on the Master 68XXXB. Connect the AUX I/O cable labeled "SLAVE" to the rear panel AUX I/O connector on the Slave 68XXXB.

Step 2 Connect the ends of the flat interface cable to the rear panel Serial I/O connectors on the Master and Slave 68XXXBs.

Step 3 Connect one end of a coaxial cable to the rear panel 10 MHz REF OUT connector on the Master 68XXXB. Connect the other end to the rear panel 10 MHz REF IN connector on the Slave 68XXXB.

Initiating Master-Slave Operation

Step 4 Connect the Master 68XXXB RF OUTPUT and the Slave 68XXXB RF OUTPUT to the appropriate connections on the DUT.

The following paragraphs describe how to set up both 68XXXB s to perform master-slave operations. Use the CW Frequency Mode menu map (Chapter 4, Figure 4-2) to follow the menu sequences.

To initiate master-slave operation, turn on both 68XXXBs and place them in CW mode. The CW Menu (below) is displayed.

On the Master 68XXXB, press Master Slave to go to the Master-Slave Menu display (below)

This menu lets you perform the following:
a Go to the Slave Frequencies List menu.

- Set the dF frequency for the Slave unit.
- Set the Slave unit's main power level (L1).
- Set the alternate sweep power level (L2) for the Slave unit.
- Turn master-slave operation on and off.

Press Slave Freqs to go to the Slave Frequencies List menu (next page).

NOTE

Upon reset, the slave frequencies (F0-F9 and M0-M9) return to the default values shown here.

This menu lets you edit the listed frequencies for the Slave 68XXXB.

Use the cursor control key to select a frequency parameter from the list, then press Edit to edit its value. Edit the current frequency parameter value using the cursor control key or rotary data knob or enter a new value using the key pad and approriate termination key. Press Edit again to close the open frequency parameter.

When you are finished editing the slave frequencies, press Previous Menu to return to the Master-Slave menu (below).

CW				Sl.ave Freac
F1				
				Slave
Level				Slave
	+6.060 dEm			${ }_{\text {Slave }}^{\text {S2 }}$
FM1	Off ${ }^{\text {fax }}$ FM	國口ff	7. ${ }^{\text {af }}$	Enable
CN	Analog	Step	Manuel	

The Master-Slave menu lets you set the dF frequency and L1 and L2 power level parameters for the Slave unit.

Press Slave DF to open the dF frequency parameter.

Press Slave L1 to open the main power level parameter.

Press Slave L2 to open the alternate sweep power level parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key

Master-Slave Operation

NOTE

The 562 SNA, when being used with the master-slave configuration, will not display markers.
pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

Press Enable to begin master-slave operation.
Press CW to return to the CW menu.
During master-slave operation, the Slave unit is in remote mode under the direct control of the Master 68XXXB. The Slave unit displays the following:

- Its output CW frequency or sweep frequency range.
- Its output power level.
- The messages Remote and Local Lockout.

The CW/sweep frequency settings on the Master 68XXXB define the master sweep, and the corresponding frequency settings on the Slave unit define the slave sweep. For example, if slave frequency F 1 is set to 4 GHz and slave frequency F 2 is set to 12 GHz , then the Slave unit will sweep from 4 to 12 GHz whenever the F 1-F 2 sweep range is selected on the Master 68XXXB. The Master 68XXXB will sweep from F1-F 2 with the values of F1 and F2 defined in the Master unit's frequency list.

Master-Slave Operation in VNA Mode

In the VNA mode of master-slave operation, a Slave unit is coupled to a Master 68XXXB that is connected to a M odel 360B Vector Network Analyzer in a source or dual source configuration. (Operating instructions for the vector network analyzer can be found in the Model 360B VNA Operation Manual, P/N 10410-00110.) The following paragraphs describe how to set up both 68XXXBs to perform master-slave operations in the VNA mode.

Place both 68XXXBs in CW mode. Then, on the Master unit, press Master Slave to go to the Master-Slave Menu display (page 7-5).

At the Master-Slave menu, press Slave Freqs to go to the Slave Frequencies List Menu display (next page).

Press VNA Menu to go to the VNA Menu display (below).

This menu lets you set the frequency offset and output power level for the Slave 68XXXB in the VNA mode.

Press VNA Offset to open the slave frequency offset parameter.

Press VNA Level to open the slave output power level parameter.

Open the parameter you wish to change, then edit the current value using the cursor control key or rotary data knob or enter a new value using the key pad and appropriate termination key. When you have finished setting the open parameter, close it by pressing its menu soft-key or by making another menu selection.

Press Previous Menu to return to the Slave Frequencies List menu.

Return to the Master-Slave menu and press Enable to begin master-slave operation.

Terminating Master-Slave Operation

The following describes how to terminate masterslave operation and return the Slave 68XXXB to local (front panel) control.

On the Master $68 \times X X B$, select CW mode.
At the CW Menu, press Master Slave to go to the Master Slave Menu display.

At the Master Slave Menu display, press Enable . This terminates master-slave operation and returns the Slave 68XXXB to local (front panel) control.

7-3 USE WITH A 562 SCALAR NETWORK ANALYZER

The 681XXB is directly compatible with the ANRITSU M odel 562 Scalar Network Analyzer (SNA). The following paragraphs provide instructions for connecting the sweep generator to the 562 SNA so that is can be used as a signal source for the analyzer. Operating instructions for the network analyzer can be found in the Model 562 Scalar Network Analyzer Operation Manual, P/N 10410-00046.

Connecting There are two ways the 681XXB can be connected to the 681XXB to the 562 SNA-using the auxiliary I/O cable and the the 562 dedi cated system bus cable or using discrete cables and the dedicated system bus cable. Instructions for both methods are provides in the following procedures.

Figure 7-2. 562 SNA to 681XXB Swep Generator Connections

Using the Auxiliary I/O Cable

Connect the 681XXB to the 562 SNA as shown in Figure 7-2.

Step 1 Connect one end of the Auxiliary I/O cable (P/N 806-7) to the 562 rear panel AUX I/O connector. Connect the other end of the cable to the 681XXB rear panel AUX I/O connector.

Step 2 Connect one end of the dedicated system bus cable (P/N 2100-1) to the 562 rear panel DEDICATED GPIB connector. Con-

USE WITH
OTHER INSTRUMENTS
SCALAR NETWORK ANALYZER
nect the other end of the cable to the 681 XXB rear panel IEEE-488 GPIB connector.

Step 3 Turn on the 681XXB and the 562. The system is now ready to operate.

Using Discrete Cables

Connect the 681XXB to the 562 SNA as follows:
Step 1 Connect one end of a coaxial cable to the 681XXB rear panel HORIZ OUT connector. Connect the other end of the cable to the 562 rear panel HORIZONTAL INPUT /OUTPUT connector.

Step 2 Connect one end of a coaxial cable to the 681XXB rear panel SEQ SYNC OUT connector. Connect the other end of the cable to the 562 rear panel SEQ SYNC INPUT connector.

Step 3 Connect one end of a coaxial cable to the 681XXB rear panel MARKER OUT connector. Connect the other end of the cable to the 562 rear panel VIDEO MARKER INPUT connector.

Step 4 Connect one end of a coaxial cable to the 681XXB rear panel DWELL IN connector. Connect the other end of the cable to the 562 rear panel SWEEP DWELL OUTPUT connector.

Step 5 Connect one end of the dedicated system bus cable ($\mathrm{P} / \mathrm{N} 2100-1$) to the 562 rear panel DEDICATED GPIB connector. Connect the other end of the cable to the 681XXB rear panel IEEE-488 GPIB connector.

Step 6 Turn on the 681XXB and the 562. The system is now ready to operate.

7-4 USE WITH A 360B VECTOR NETWORK ANALYZER

The 681XXB sweep generator is compatible with the ANRITSU M odel 360B Vector Network Analyzer (VNA). The following paragraphs provide instructions for connecting the 681XXB to the 360B VNA and configuring the sweep generator so that it can operate as a signal source for the analyzer. Operating instructions for the vector network anaIyzer can be found in the Model 360B Vector Network Analyzer Operation Manual, P/N 10410-00110.

Figure 7-3. 360B VNA to 681XXB Sweep Generator Connections
Connecting Connect the 681XXB sweep generator to the 360B the 681XXB to vector network analyzer as shown in Figure 7-3. the 360B

Step 1 Connect one end of a coaxial cable to the 681 XXB rear panel FM IN connector. Connect the other end to the 360B rear panel EXT FM Φ LOCK OUTPUT connector.

Step 2 Connect one end of a coaxial cable to the 681 XXB rear panel 10 MHz REF IN connector. Connect the other end to the 360B rear panel 10 MHz REF OUT connector.

If the 681XXB contains an Option 16 high-stability time base, connect the coaxial cable between the 681XXB rear panel 10 MHz REF OUT connector and the 360B rear panel 10 MHz REF IN connector.

Step 3 Connect one end of a GPIB cable, 1 meter in length, to the 681XXB rear panel IEEE-488 GPIB connector. Connect the other end of the cable to the 360B rear panel SOURCE CONTROL SYSTEM BUS connector.

Step 4 Turn on the 681XXB and configure it as described in the following paragraphs.

Modes of Operation

Source Lock Mode

There are two 360B VNA receiver modes of operation that are used with the 681XXB-the 360B source lock mode and the 360B tracking mode. The configuration and operation of the 681XXB for both modes of operation are described in the following paragraphs.

When operating in source lock mode, the 360B phase locks the frequency output of the 681XXB. This is accomplished by sending a dc control voltage to the FM input on the 681XXB. Due to the inherent resolution of the 360B's synthesized local oscillators, frequency resolution is limited to 100 kHz intervals.

Source Lock Mode Configuration

In order for the 681XXB to operate with a 360B in source lock mode, the sweep generator must be placed in the SS Mode of operation.

To place the sweep generator in SS M ode, first press the main menu key SYSTEM. At the System Menu display, press Config. The System Configuration Menu (below) is displayed.

CW	Front. Fanel
	Rear Farnel
Level	RF
L1 + 0.61 dEm	[iPIE
	Incr Menu
Reset Config Setups Secure	lftest

SS MODE

When SS Mode is selected on, this message is displayed (in the frequency mode title bar) on all menu displays to remind the operator that the 681XXB is in a source lock mode.

NOTES

A 360B VNA and a 68137B, 68153B, or 68163B Source in SS Mode should not be operated below 2.1 GHz becauseit may fail tolock.

A 360B VNA and a 681X5B Source in SS Mode should not be operated below 600 MHz because it may fail to lock.

A 360B VNA that is using a 3612A, 3613A, 3622A, 3623A, or 3631A Test Set and a 681XXB Sourcein SS Mode should not be operated above 60 GHz because it will fail to lock. For operations above 60 GHz , use the 681XXB Source in tracking mode.

At the System Configuration menu, press GPIB . The Configure GPIB Menu (below) is displayed.

Verify that the GPIB address and terminator shown on the display match the System Bus source address and data terminator that are set on the 360B VNA.

If the address of the 681XXB on the System Bus needs changing, press GPIB Address. Enter the new address using the cursor control key or the data entry keypad and the terminator key
HZ
ms
ADRS

The new GPIB address will appear on the display.
To change the data terminator, press Line Term to select the correct GPIB data delimiter.

Press SS Mode to turn on SS mode. This places the 681XXB in a source lock mode.

The sweep generator is now configured for 360B source lock mode operation.

Initiating 360B Source Lock Mode Operations

Turn on the 360B and configure it for source lock mode of operation. (Refer to the 360B VNA operation manual.) Once configured, the 360B takes control of the sweep generator.

When the 360B takes control, the display of all parameters on the 681XXB is disabled and the messages SS MODE, Secure Mode Active, and Remote appear on the front panel display.

Terminating 360B Source Lock Mode Operations

To terminate 360B VNA source lock mode operations, you must first return the 681XXB to local control and then turn off the SS Mode.

To return the 681XXB to local control, turn off the 360B VNA.

On the 681XXB, press SYSTEM, then Reset. This turns off the Secure mode.

Next, press SYSTEM, then Config to access the System Configuration Menu display.

At the System Configuration Menu,press GPIB . When the Configure GPIB Menu (shown below) is displayed, press SS Mode to turn the SS mode off.

Tracking Mode

When operating in tracking mode, the 360B steers its second local oscillator frequency and phase signal so as to phase-lock itself to the reference signal from the 681XXB. Due to the inherent resolution of the 360B's frequency readout, frequency resolution is limited to 1 kHz intervals.

Tracking Mode Configuration

In order for the 681XXB to operate with a 360B in tracking mode, the sweep generator must be operating in normal mode (SS M ode off). In addition, its GPIB address and data terminator must match the System Bus source address and data terminator that are set on the 360B VNA.

To verify the GPIB address and data terminator or to turn the SS mode off, press SYSTEM. At the System Menu display, press Config. When the System Configuration Menu is displayed, press GPIB. The Configure GPIB Menu (shown below) is displayed.

If the address of the 681XXB on the System Bus needs changing, press GPIB Address. Enter the new address using the cursor control key or the data entry keypad and the terminator key

```
    HZ
    ms
ADRS
```

The new GPIB address will appear on the display.
To change the data terminator, press Line Term to select the correct GPIB data delimiter.

To turn SS mode off, press SS Mode .
The sweep generator is now configured for 360B tracking mode operation.

Initiating 360B Tracking Mode Operations

Turn on the 360B and configure it for tracking mode of operation. (Refer to the 360B VNA operation manual.) Once configured, the 360B should take control of the sweep generator.

When the 360B takes control, the display of all parameters on the 681XXB is disabled and the messages Secure Mode Active and Remote appear on the front panel display.

Terminating 360B Tracking Mode Operations

To terminate 360B VNA tracking mode operations, you must first return the 681XXB to local control and then turn off the Secure mode.

To return the 681XXB to local control, turn off the 360B VNA.

On the 681XXB, press SYSTEM, then Reset . This turns off the Secure mode.

7-5 USE WITH A HP8757D SCALAR NETWORK ANALYZER

Models 681XXB with Firmware Version 3.45 and above (Models 681X5B with Firmware Version 1.33 and above)

The 681XXB sweep generator is compatible with the Hewlett Packard Model 8757D Scalar Network Analyzer (SNA). The following paragraphs provide instructions for connecting the 681XXB to the HP8757D SNA and setting up the sweep generator so that it can operate as a signal source for the analyzer. Operating instructions for the scalar network analyzer can be found in the Hewlett Packard Model 8757D Scalar Network Analyzer Operation Manual.

Figure 7-4. 681 XXB to HP8757D SNA Connections

Connecting the 681XXB to the HP8757D

Connect the 681XXB sweep generator to the HP8757D scalar network analyzer as shown in Figure 7-4.

Step 1 Connect one end of a GPIB cable to the 681XXB rear panel IEEE-488 GPIB connector. Connect the other end to the HP8757D rear panel 8757 SYSTEM INTERFACE connector.

Step 2 Connect one end of a coaxial cable having BNC connectors to the 681XXB rear panel $\square _I N$ connector. Connect the other end of the cable to the HP8757D
rear panel MODULATOR DRIVE connector.

Step 3 Connect the special AUX I/O interface cable (Anritsu Part No. 806-90) to the 681XXB rear panel AUX I/O connector. Connect the cable end having BNC connectors as follows:
a. Connect the cable end labeled " SEQ SYNC" to the HP8757D rear panel POS Z BLANK connector.
b. Connect the cable end labeled "SWP DWELL IN" to the HP8757D rear panel STOP SWEEP connector.
c. Connect the cable end labeled "HORIZ OUT" to the HP8757D rear panel SWEEP IN 0-10V connector.

Setting up the 681XXB

The 681XXB must be set to GPIB address 19 and in the 8757D Scalar mode of operation to function as a signal source of the SNA. The following paragraphs describe how to set up the 681XXB to enable the 8757D Scalar GPIB mode.

On the 681XXB front panel, press LINE to place the sweep generator in operation.

Allow the sweep generator to warm up, then press the SYSTEM main menu key. At the System Menu display, press Config. The System Configuration Menu (below) is displayed.

CW	Front. F:anel
	Rear Fanel
Level	RF
	GFIE
FM \ll	Iner Menu
Reset Config Setups Secure	elftest

At the System Configuration menu, press GPIB . The Configure GPIB Menu (on the following page) is displayed.

Press GPIB Address to change the address of the 681XXB on the bus. E nter 19 using the cursor control key or the data entry keypad and the terminator key.

$$
\begin{gathered}
\mathrm{Hz} \\
\mathrm{~ms} \\
\text { ADRS }
\end{gathered}
$$

The new GPIB address (19) will appear on the display.

Press More to go to the additional Configure GPIB menu (below).

Press 8757D Scalar to enable the 8757D Scalar GPIB mode. When enabled, the 681XXB will shift to the analog sweep frequency mode sweeping at the full range of the instrument.

Initiating HP8757D SNA Operation

Turn ON the HP8757D to initiate scalar network analyzer operation. (Refer to the Hewlett Packard M odel 8757D Scalar Network Analyzer Operation Manual for operating instructions.)

Appendix A Rear Panel Connectors

A-1 introduction

A-2 rear panel CONNECTORS

A-3 connector pinout DIAGRAMS

This appendix provides descriptions for the rear panel connectors on a typical Series 681XXB Synthesized Sweep Generator.

Figure A-1 provides a illustration of the rear panel and describes the rear panel connectors.

Figures A-2 and A-3 provide pinout diagrams and descriptions for the AUX I/O and IEEE-488 GPIB multipin connectors on the rear panel.

REAR PANEL CONNECTORS

AUX I/O: 25-pin connector that provides for single cable interface with another sweep generator (master-slave operation) and with other ANRITSU instruments such as the ANRITSU 562 Scalar Network Analyzer. A pinout dagram for this connector is shown in Figure A-2.
SEQ SYNC OUT: Provides a +5 V signal during sweep retrace, at bandswitching points, and during each frequency step in step sweep mode. Also, when video markers are selected, provides -5 V marker pulses and a -10 V selected marker pulse during forward sweep. BNC connector.
(3) HORIZ OUT: Provides a OV to 10 V ramp during all sweep modes, regardless of sweep width. In the CW mode, provides a voltage between 0 V and 10 V proportional to the full ferequincy range of the instrument. When the CW

Ramp is enabled, connector provides a repetilive 0 V to 10 V ramp. BNC connector, 50Ω itpedance.
4) $\mathbf{1 0} \mathbf{~ M H z}$ REF IN: Accepts an external 10 MHz $\pm 100 \mathrm{~Hz}, 0$ to 10 dBm time-base signal. Automatically disconnects the internal highstability, time-base option, if installed. BNC connector, 50Ω impedance.
5) $\mathbf{1 0} \mathbf{~ M H z ~ R E F ~ O U T : ~ P r o v i d e s ~ a ~} 0.5 \mathrm{Vp}-\mathrm{p}, \mathrm{AC}$ coupled, 10 MHz signal derived from the internat frequency standard of the sweep generator. BNC connector, 50Ω impedance.

6 AM IN: Accepts an external modulating signal to produce AM on the RF output. AM sensitivty (linear or log) and input impedance (50Ω or 600Ω) are selectable via front panel menu or GPIB. BNC connector.

Figure A-1. Rear Pane, Series 681XXB Synthesized Sweep Generator (1 of 2)

REAR PANEL CONNECTORS

FM IN: Accepts an external modulating signal to produce FM on the RF output. FM sensitivity and input impedance (50Ω or 600Ω) are seelectable via front panel menu or GPIB. BNC connector.
$\square \mathrm{IN}$: Accepts an external TTL level signal to square wave (pulse) modulate the RF output. BNC connector.
EXT ALC IN: Provides for leveling the RF output signal externally with either a remote detector or a power meter. Connector accepts a positive or negative $0.5-500 \mathrm{mV}$ signal from a remote detector or a $\pm 1 \mathrm{~V}$ signal from a remote power meter. BNC connector.
(10) Line Fuse: Provides over-voltage/current protection for sweep generator circuits during operation and standby. Unit requires a 5 A , slow blow fuse for 110 Vac line voltage or a 2.5A, slow blow fuse for 220 Vac line voltage.
LINE SELECT Switch: Provides selection of 110 or 220 Vac line voltages. When 110 Vac is selected, the 681XXB accepts 90-132 Vac, $48-440 \mathrm{~Hz}$ line voltage; when 220 Vac is selected, the 681XXB accepts 180-264 Vac, 48440 Hz line voltage.
Input Line Voltage Receptacle: Provides for connecting line voltage to the 681XXB.
(13) IEEE-488 GPIB: 24 -pin connector that provide for remotely controlling the sweep generato from an external controller via the IEEE-488 bus (GPIB). A pinout diagram for this connector is shown in Figure A-3.
(14) SERIAL I/O: Provides access to two RS-232 terminal ports to support service and calibradion functions and master-slave operations. RJ45 connector.

DWELL IN: Accepts an external TTL low-level signal to stop the sweep in both analog- and step-sweep modes. The sweep resumes when the signal is removed.

V/GHz OUT: Provides a reference voltage relative to the frequency of the RF output (see table below). BNC connector.

Model Number	V/GHz Output
68137B, 68145B, 68147B	$1.0 \mathrm{~V} / \mathrm{GHz}$
68153B, 68155B, 68159B	$0.5 \mathrm{~V} / \mathrm{GHz}$
68163B, 68163B, 68169B	$0.5 \mathrm{~V} / \mathrm{GHz}$
68175B, 68177B	$0.25 \mathrm{~V} / \mathrm{GHz}$
$68185 \mathrm{~B}, 68187 \mathrm{~B}$	$0.25 \mathrm{~V} / \mathrm{GHz}$
$68195 \mathrm{~B}, 68197 \mathrm{~B}$	$0.25 \mathrm{~V} / \mathrm{GHz}$

(17) PEN LIFT OUT: Provides relay contacts for lifting and dropping a chart recorder's pen during bandswitch points and sweep retrace. Selecion of normally-open or normally-closed relay contacts can be made from the front panel menu. BNC connector.

MARKER OUT: Provides a -5 V or +5 V output at each frequency marker if video markers have been selected. Selection of signal polarty can be made from the front panel menu. BNC connector.
(19) RETRACE BLANK OUT: Provides a -5 V or +5 V output during sweep retrace. Selection of signal polarity can be made from the front panel menu. BNC connector.

Figure A-1. Rear Pane, Series 681XXB Synthesized Sweep Generator (2 of 2)

PIN
SIGNAL NAME
HORIZ OUTPUT
GND
SEQ SYNC
L ALT ENABLE
MARKER OUTPUT
RETRACE BLANKING
L ALT SWP
TRIGGER OUTPUT
SWP DWELL OUT
LOCK STATUS
RXb
EXT TRIGGER

SIGNAL DESCRIPTION
Horizontal Sweep Output: Provides a 0V at beginning and +10V at end of sweep for all sweep modes, regardless of sweep width. In the CW mode, the voltage is proportional to frequency between 0 V at low end and +10 V at the high end of range. In CW mode, if CW Ramp is enabled, a repetitive, 0 V to +10 V ramp is provided. The ramp speed is adjusted by the Sweep Time function.
Chassis Ground
Sequential Sync Output: Provides a +5 V signal during sweep retrace, at bandswitching points, and during each frequency step in step sweep mode, -5 V during markers, and -10 V during the selected marker.
L-Alternate Enable Output: Provides a TTL low-level signal which indicates that the alternate sweep mode is active.
Marker Output: Provides a +5 V or -5 V signal during a marker. Signal polarity selected from a front panel menu.
Retrace Blanking Output: Provides a +5 V or -5 V signal coincident with sweep retrace. Signal polarity selected from a front panel menu.
L-Alternate Sweep Output: Provides a TTL low-level signal to indicate that the primary sweep is in progress or a TTL high-level signal to indicate that the alternate sweep is in progress.
Cable Shield/Chassis Ground
Trigger Output: Provides a TTL low-level trigger signal for external devices or instruments.
Sweep Dwell Output: Provides an open-collector output which goes to ground when the sweep is dwelled at the start, stop, and bandswitching frequencies, and at the markers.
Lock Status Output: Provides a TTL high-level signal when the frequency is phase-locked.
$R X b$: Serial Data Input to the processor (/t1).
External Trigger: Accepts a TTL low-level signal of $1 \mu \mathrm{~s}$ width to trigger a sweep.

Figure A-2. Pinout Diagram, AUX I/ O Connector (1 of 2)

PIN	SIGNAL NAME	SIGNAL DESCRIPTION
14	V/GHz	V/GHz Output: Provides a reference voltage relative to the RF output frequency (1.0 V/GHz for Models 68137B, 68145B, and 68147B; $0.5 \mathrm{~V} / \mathrm{GHz}$ for Models 68153B, 68155B, 68159B, 68163B, 68165B, and 68169B; 0.25V/GHz for Models 68175B, 68177B, 68185B, 68187B, 68195B, and 68197B).
15	EOS INPUT	End-of-Sweep Input: Accepts a TTL high-level signal to tell the sweep generator to begin the end of sweep dwell.
16	EOS OUTPUT	End-of-Sweep Output: Provides a TTL high-level signal when the sweep generator has begun the end of sweep dwell.
17	AUX 1	Aux 1: Auxiliary input/output to the processor (PB6).
18	SWP DWELL IN	Sweep Dwell Input: Permits a TTL low-level signal to stop the sweep in both ana-log- and step-sweep modes. The sweep resumes when the signal is removed.
19	AUX 2	Aux 2: Auxiliary input/output to the processor (PC3).
20	BANDSWITCH BLANK	Bandswitch Blanking Output: Provides a +5 V or -5 V signal coincident with bandswitching points. Signal polarity is selected from a front panel menu.
21	SPARE	
22	HORIZ IN	Horizontal Sweep Input: Accepts a 0V to 10V external sweep ramp from a Master sweep generator. This input is automatically selected when the sweep generator is in the Slave Mode.
23	Return	Horizontal Sweep Input return.
24	TXb	TXb: Serial Data Output from the processor.
25	MEMORY SEQ	Memory Sequencing Input: Accepts a TTL low-level signal to sequence through nine stored, front panel setups.

Figure A-2. Pinout Diagram, AUX I/ O Connector (2 of 2)

IEEE-488 GPIB

PIN	SIGNAL NAME	SIGNAL DESCRIPTION
1-4	DIO 1 thru DIO 4	Data Input/Output: Bits are HIGH when the data is logical 0 and LOW when the data is logical 1.
5	EOI	End or Identify: A low-true state indicates that the last byte of a multibyte message has been placed on the line.
6	DAV	Data Valid: A low-true state indicates that the active talker has (1) sensed that NRFD is high-false and NDAC is low-true, (2) placed the data byte on the bus, and (3) waited an appropriate length of time for the data to settle.
7	NRFD	Not Ready For Data: A high-false state indicates that all active listeners are ready to accept new data.
8	NDAC	Not Data Accepted: A low-true state indicates that all addressed listeners have accepted the current data byte for internal processing.
9	IFC	Interface Clear: A low-true state places all bus instruments in a known, quiescent state-unaddressed to talk, unaddressed to listen, and service request idle.
10	SRQ	Service Request: A low-true state indicates that a bus instrument desires the immediate attention of the controller.
11	ATN	Attention: A low-true state indicates that the bus is in the command mode (data lines are carrying bus commands). A high-false state indicates that the bus is in the data mode (data lines are carrying device-dependent instructions or data).
12	Shield	Chassis Ground
13-16	DIO5 thru DIO6	Data Input/Output: Bits are HIGH when the data is logical 0 and LOW when the data is logical 1.
17	REN	Remote Enable: A low-true state enables bus instruments to be operated remotely, when addressed.
18-24	GND	Logic Ground

Figure A-3. Pinout Diagram, IEEE-488 GPIB Connector

Appendix B
 Performance Specifications

MODEL SUMMARY

Model	Frequency Range
68137 B	2.0 to 20.0 GHz
68145 B	0.5 to 20.0 GHz
68147 B	0.01 to 20.0 GHz
68153 B	2.0 to 26.5 GHz
68155 B	0.5 to 26.5 GHz
68159 B	0.01 to 26.5 GHz
68163 B	2.0 to 40.0 GHz
68165 B	0.5 to 40.0 GHz
68169 B	0.01 to 40.0 GHz
68175 B	0.5 to 50.0 GHz
68177 B	0.01 to 50.0 GHz
68185 B	0.5 to 60.0 GHz
68187 B	0.01 to 60.0 GHz
68195 B	0.5 to 65.0 GHz (with usable output to 67 GHz) 68197 B
0.01 to 65.0 GHz (with usable output to 67 GHz	

FREQUENCY

CW MODE

Output: Twenty independent, presettable CW frequencies
(F0 - F9 and M0 - M9).
Accuracy: Same as internal or external 10 MHz time base. Internal Time Base Stability:

With Aging: $<2 \times 10^{-8} /$ day
($<5 \times 10^{-10}$ /day with Option 16)
With Temperature: $<2 \times 10^{-8} /{ }^{\circ} \mathrm{C}$ over $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ($<2 \times 10^{-10} /{ }^{\circ} \mathrm{C}$ with Option 16)

Resolution:

1 kHz (0.1 Hz with Option 11)
External 10 MHz Reference Input: Accepts external $10 \mathrm{MHz} 100 \mathrm{~Hz}, 0$ to +10 dBm time base signal. Automatically disconnects the internal high-stability time-base option, if installed. BNC, rear panel, 50Ω impedance.
10 MHz Reference Output: 0.5 Vp -p into $50 \Omega, \mathrm{AC}$ coupled. Rear panel BNC; 50Ω impedance.

Switching Time (typical maximum): <40 ms to be within 1 kHz of final frequency.

ANALOG SWEEP MODE

Sweep Width: Independently selected from 1 MHz to full range continuous sweep.
Accuracy: The lesser of:
$\pm 30 \mathrm{MHz}$ or $\pm(2 \mathrm{MHz}+0.25 \%$ of sweep width $)$ for sweep speeds of $\leq 50 \mathrm{MHz} / \mathrm{ms}$.
Sweep Time Range: 30 ms to 99 seconds

PHASE-LOCKED STEP SWEEP MODE

Sweep Width: Independently selected, $1 \mathrm{kHz}(0.1 \mathrm{~Hz}$ with Option 11) to full range. Every frequency step in sweep range is phase-locked.
Accuracy: Same as internal or external 10 MHz time base.
Resolution (Minimum Step Size):
1 kHz (0.1 Hz with Option 11)
Steps: User-selectable number of steps or the step size.
Number of Steps: Variable from 1 to 10,000
Step Size: $1 \mathrm{kHz}(0.1 \mathrm{~Hz}$ with Option 11) to the full frequency range of the instrument. (If the step size does not divide into the selected frequency range, the last step is truncated.)
Dwell Time Per Step: Variable from 1 ms to 99 seconds
Switching Time (typical maximum): <15 ms +
$1 \mathrm{~ms} / \mathrm{GHz}$ step size or $<40 \mathrm{~ms}$, whichever is less.

ALTERNATE SWEEP MODE

Sweeps alternately in analog or step sweep between any two sweep ranges. Each sweep range may be associated with a different power level.

MANUAL SWEEP MODE

Provides stepped, phase-locked adjustment of frequency between sweep limits. User-selectable number of steps or step size.

360B VNA SOURCE LOCK MODE

Under control of the ANRITSU 360B Vector Network Analyzer, the synthesized sweep generator is phase-locked at a typical $<8.5 \mathrm{~ms} /$ step sweep speed. Frequency resolution is limited to 100 kHz .

PROGRAMMABLE FREQUENCY AGILITY

Under GPIB control, up to 1000 non-sequential frequencies can be stored and then addressed as a phase-locked step sweep. Data stored in volatile memory.

MARKERS

Up to 20 independent, settable markers (F0 - F9 and M0 - M9).
Video Markers: +5 V or -5 V marker output, selectable from system menus. BNC and AUX I/O connectors, rear panel.
Intensity Markers (Available in Analog Sweeps of <1 Second Sweep Time): Produces an intensified dot on trace, obtained by momentary dwell in RF sweep.
Marker Accuracy: Same as sweep frequency accuracy.
Marker Resolution (Analog Sweep):
1 MHz or Sweep Width/4096, whichever is greater.
Marker Resolution (Step Sweep):
1 kHz (0.1 Hz with Option 11)

SWEEP TRIGGERING

Sweep triggering is provided for Analog Frequency Sweep, Step Frequency Sweep, and CW Power Sweep.
Auto: Triggers sweep automatically.
External: Triggers a sweep on the low to high transition of an external TTL signal. AUX I/O connector, rear panel.
Single: Triggers, aborts, and resets a single sweep. Reset sweep may be selected to be at the top or bottom of the sweep. The pen lift will activate at sweep speeds ≥ 1 second.

SPECTRAL PURITY

All specifications apply to the phase-locked CW and Step Sweep modes at the lesser of +10 dBm output or maximum specified leveled output power, unless otherwise noted.

SPURIOUS SIGNALS

Harmonic and Harmonic Related:

$\mathbf{5 0 0} \mathrm{MHz}$ to $\leq 2.2 \mathrm{GHz}(681 \mathrm{X} 5 \mathrm{~B}):$	$<-50 \mathrm{dBc}$
$\mathbf{1 0} \mathrm{MHz}$ to $\leq 50 \mathrm{MHz}:$	$<-30 \mathrm{dBc}$
$\mathbf{> 5 0 ~ M H z}$ to $\leq 2 \mathrm{GHz}:$	$<-40 \mathrm{dBc}$
$\mathbf{> 2} \mathrm{GHz}(2.2 \mathrm{GHz}$ for $\mathbf{6 8 1 X} 5 \mathrm{~B})$ to $\leq \mathbf{2 0} \mathrm{GHz}:$	$<-60 \mathrm{dBc}$
$>20 \mathrm{GHz}$ to $\leq \mathbf{4 0} \mathrm{GHz}:$	$<-40 \mathrm{dBc}$

$<-50 \mathrm{dBc}$
10 MHz to $\leq 50 \mathrm{MHz}$: $<-30 \mathrm{dBc}$
$>50 \mathrm{MHz}$ to $\leq 2 \mathrm{GHz}$: $<-40 \mathrm{dBc}$
$>2 \mathrm{GHz}(2.2 \mathrm{GHz}$ for 681 X 5 B$)$ to $\leq 20 \mathrm{GHz}$: $<-60 \mathrm{dBc}$
>20 GHz to $\leq \mathbf{4 0} \mathbf{~ G H z : ~}<-40 \mathrm{dBc}$

Harmonic and Harmonic Related (Models having a high-end frequency of $>40 \mathrm{GHz}$ and units with Option 15A at maximum specified leveled output power):

500 MHz to $\leq 2.2 \mathrm{GHz}$ (681X5B):	$<-50 \mathrm{dBc}$
MHz to $\leq 50 \mathrm{MHz}$	$<-30 \mathrm{dBc}$
$>50 \mathrm{MHz}$ to $\leq 2 \mathrm{GHz}$:	$<-40 \mathrm{dBc}$
>2 GHz (2.2 GHz for 681X5B) to $\leq 20 \mathrm{GHz}$:	$<-50 \mathrm{dBc}$
>20 GHz to $\leq 40 \mathrm{GHz}$:	$<-40 \mathrm{dBc}$
50 GHz units: $>40 \mathrm{GHz}$ to $\leq 50 \mathrm{GHz}$:	$<-40 \mathrm{dBc}$
60 GHz units: $>40 \mathrm{GHz}$ to $\leq 60 \mathrm{GHz}$:	$<-30 \mathrm{dBc}$
65 GHz units: $>40 \mathrm{GHz}$ to $\leq 45 \mathrm{GHz}$:	$<-25 \mathrm{dBc}$
$>45 \mathrm{GHz}$ to $\leq 65 \mathrm{GHz}$:	$<-30 \mathrm{dBc}$
onharmonics:	
500 MHz to $\leq 2.2 \mathrm{GHz}$ (681X5B):	$<-50 \mathrm{dBc}$
10 MHz to $\leq 2 \mathrm{GHz}$:	$<-40 \mathrm{dBc}$
2 GHz (2.2 GHz for 681X5B) to ≤ 65	-60

SINGLE-SIDEBAND PHASE NOISE
(dBc/Hz)

Frequency (GHz)	Offset From Carrier			
	$\mathbf{1 0 0 ~ H z}$	$\mathbf{1 ~ k H z}$	$\mathbf{1 0} \mathbf{~ k H z}$	$\mathbf{1 0 0} \mathbf{~ k H z}$
0.6 $(681 \mathrm{X} 5 \mathrm{~B})$	-87	-100	-98	-115
0.6	-77	-88	-86	-100
2.0 $(681 \times 5 \mathrm{~B})$	-81	-94	-92	-109
2.0	-80	-88	-86	-102
6.0	-78	-88	-86	-102
10.0	-73	-86	-83	-102
20.0	-66	-78	-78	-100
26.5	-63	-78	-76	-96
40.0	-60	-75	-72	-94
50.0	-54	-69	-66	-88
65.0	-54	-69	-64	-88

POWER LINE and FAN ROTATION SPURIOUS EMISSIONS (dBc)

Frequency Range (GHz)	Offset From Carrier		
	$<\mathbf{3 0 0 ~ H z}$	$\mathbf{3 0 0 H z}$ to $\mathbf{1 ~ k H z}$	$>1 \mathrm{kHz}$
0.5 to ≤ 1.0 (681X5B)	<-62	<-72	<-72
>1.0 to ≤ 2.2 (681X5B)	<-56	<-66	<-66
0.01 (>2.2 for $681 \mathrm{X} 5 \mathrm{~B})$ to ≤ 8.4	<-50	<-60	<-60
>8.4 to ≤ 20	<-46	<-56	<-60
>20 to ≤ 40	<-40	<-50	<-54
>40 to ≤ 65	<-34	<-44	<-48

RESIDUAL FM
(50 Hz - 15 kHz BW)
$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Frequency Range } \\ \text { (GHz) }\end{array} & \begin{array}{c}\text { Residual FM } \\ \text { (Hz RMS) }\end{array} \\ \hline \begin{array}{c}0.5 \text { to } \leq 1.0 \\ (681 \times 5 \mathrm{~B})\end{array} & <30 \\ \hline \begin{array}{c}>1.0 \text { to } \leq 2.2 \\ (681 \times 5 \mathrm{~B})\end{array} & <60 \\ \hline 0.01 \text { (>2.2 for } 681 \mathrm{X5B}) \\ \text { to } \leq 8.4\end{array}\right)<120$

RESIDUAL FM
(Analog Sweep and Unlocked FM modes, 50 Hz 15 kHz BW)

Frequency Range (GHz)	Unlocked Narrow FM Mode (kHz RMS)	Unlocked Wide FM Mode or Analog Sweep (kHz RMS)
0.5 to ≤ 1.0 $(681$ X5B)	<1.25	<6.3
>1.0 to ≤ 2.2 $(681 \mathrm{X} 5 \mathrm{~B})$	<2.5	<12.5
0.01 (>2.2 for $681 \mathrm{X} 5 \mathrm{~B})$ to ≤ 20	<5	<25
>20 to ≤ 40	<10	<50
>40 to ≤ 65	<20	<100

AM Noise Floor:

Typically $<-145 \mathrm{dBm} / \mathrm{Hz}$ at 0 dBm output and offsets $>5 \mathrm{MHz}$ from carrier.

RF OUTPUT

Power level specifications apply at $25^{\circ} \pm 10^{\circ} \mathrm{C}$.
MAXIMUM LEVELED OUTPUT POWER

Model Number	Frequency Range (GHz)	Output Power (dBm)	Output Power with Step Attenuator (dBm)
68137B	2.0 to ≤ 20.0	+13.0	+11.0
68145B	0.5 to ≤ 20.0	+13.0	+11.0
68147B	0.01 to ≤ 20.0	+13.0	+11.0
68153B	$\begin{gathered} 2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 26.5 \end{gathered}$	$\begin{aligned} & +9.0 \\ & +6.0 \end{aligned}$	$\begin{aligned} & +7.0 \\ & +3.5 \end{aligned}$
68155B	$\begin{gathered} 0.5 \text { to } \leq 2.2 \\ >2.2 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 26.5 \end{gathered}$	$\begin{gathered} +13.0 \\ +9.0 \\ +6.0 \end{gathered}$	$\begin{aligned} & +11.0 \\ & +7.0 \\ & +3.5 \end{aligned}$
68159B	$\begin{gathered} 0.01 \text { to } \leq 2.0 \\ >2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 26.5 \end{gathered}$	$\begin{gathered} +13.0 \\ +9.0 \\ +6.0 \end{gathered}$	$\begin{aligned} & +11.0 \\ & +7.0 \\ & +3.5 \end{aligned}$
68163B	$\begin{gathered} 2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \end{gathered}$	$\begin{aligned} & +9.0 \\ & +6.0 \end{aligned}$	$\begin{array}{r} +7.0 \\ +3.0 \\ \hline \end{array}$
68165B	$\begin{gathered} 0.5 \text { to } \leq 2.2 \\ >2.2 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \end{gathered}$	$\begin{gathered} +13.0 \\ +9.0 \\ +6.0 \end{gathered}$	$\begin{aligned} & +11.0 \\ & +7.0 \\ & +3.0 \end{aligned}$
68169B	$\begin{gathered} 0.01 \text { to } \leq 2.0 \\ >2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \end{gathered}$	$\begin{gathered} +13.0 \\ +9.0 \\ +6.0 \end{gathered}$	$\begin{aligned} & +11.0 \\ & +7.0 \\ & +3.0 \end{aligned}$
68175B	$\begin{gathered} 0.5 \text { to } \leq 2.2 \\ >2.2 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \\ >40.0 \text { to } \leq 50.0 \end{gathered}$	$\begin{aligned} & +11.0 \\ & +10.0 \\ & +2.5 \\ & +2.5 \end{aligned}$	$\begin{array}{r} +10.0 \\ +8.5 \\ 0.0 \\ -1.0 \end{array}$
68177B	$\begin{gathered} 0.01 \text { to } \leq 2.0 \\ >2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \\ >40.0 \text { to } \leq 50.0 \end{gathered}$	$\begin{aligned} & +12.0 \\ & +10.0 \\ & +2.5 \\ & +2.5 \end{aligned}$	$\begin{array}{r} +10.0 \\ +8.5 \\ 0.0 \\ -1.0 \end{array}$
68185B	$\begin{gathered} 0.5 \text { to } \leq 2.2 \\ >2.2 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \\ >40.0 \text { to } \leq 50.0 \\ >50.0 \text { to } \leq 60.0 \end{gathered}$	$\begin{gathered} +11.0 \\ +10.0 \\ +2.5 \\ +2.0 \\ +2.0 \end{gathered}$	$\begin{array}{r} +10.0 \\ +8.5 \\ 0.0 \\ -1.5 \\ -2.0 \end{array}$
68187B	$\begin{gathered} 0.5 \text { to } \leq 2.0 \\ >2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \\ >40.0 \text { to } \leq 50.0 \\ >50.0 \text { to } \leq 60.0 \end{gathered}$	$\begin{aligned} & \hline+12.0 \\ & +10.0 \\ & +2.5 \\ & +2.0 \\ & +2.0 \end{aligned}$	$\begin{array}{r} +10.0 \\ +8.5 \\ 0.0 \\ -1.5 \\ -2.0 \end{array}$

MAXIMUM LEVELED OUTPUT POWER (Continued)

Model Number	Frequency Range (GHz)	Output Power (dBm)	Output Power with Step Attenuator (dBm)
68195B	$\begin{gathered} 0.5 \text { to } \leq 2.2 \\ >2.2 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \\ >40.0 \text { to } \leq 50.0 \\ >50.0 \text { to } \leq 65.0 \end{gathered}$	$\begin{array}{r} +11.0 \\ +10.0 \\ +2.5 \\ 0.0 \\ -2.0 \end{array}$	Not Available
68197B	$\begin{gathered} 0.5 \text { to } \leq 2.0 \\ >2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 40.0 \\ >40.0 \text { to } \leq 50.0 \\ >50.0 \text { to } \leq 65.0 \end{gathered}$	$\begin{array}{r} +12.0 \\ +10.0 \\ +2.5 \\ 0.0 \\ -2.0 \end{array}$	Not Available
With Option 15A (High Power) Installed			
68137B	2.0 to 20.0	+17.0	+15.0
68145B	$\begin{gathered} 0.5 \text { to } \leq 2.2 \\ >2.2 \text { to } \leq 20.0 \end{gathered}$	$\begin{aligned} & +13.0 \\ & +17.0 \end{aligned}$	$\begin{aligned} & +11.0 \\ & +15.0 \end{aligned}$
68147B	$\begin{gathered} 0.5 \text { to } \leq 2.2 \\ >2.2 \text { to } \leq 20.0 \end{gathered}$	$\begin{aligned} & +13.0 \\ & +17.0 \end{aligned}$	$\begin{aligned} & +11.0 \\ & +15.0 \end{aligned}$
68153B	$\begin{gathered} 2.0 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 26.5 \end{gathered}$	$\begin{aligned} & +13.0 \\ & +10.0 \end{aligned}$	$\begin{gathered} +11.0 \\ +7.5 \end{gathered}$
68155B	$\begin{array}{r} 0.5 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 26.5 \end{array}$	$\begin{aligned} & +13.0 \\ & +10.0 \end{aligned}$	$\begin{gathered} +11.0 \\ +7.5 \end{gathered}$
68159B	$\begin{gathered} 0.01 \text { to } \leq 20.0 \\ >20.0 \text { to } \leq 26.5 \end{gathered}$	$\begin{aligned} & +13.0 \\ & +10.0 \end{aligned}$	$\begin{aligned} & +11.0 \\ & +7.5 \end{aligned}$
68163B	$\begin{gathered} 2 \text { to } \leq 20.0 \\ >20 \text { to } \leq 40.0 \end{gathered}$	$\begin{gathered} +13.0 \\ +6.0 \end{gathered}$	$\begin{aligned} & +11.0 \\ & +3.0 \end{aligned}$
68165B	$\begin{aligned} & 0.5 \text { to } \leq 20.0 \\ & >20 \text { to } \leq 40.0 \end{aligned}$	$\begin{gathered} +13.0 \\ +6.0 \end{gathered}$	$\begin{gathered} +11.0 \\ +3.0 \end{gathered}$
68169B	$\begin{aligned} & 0.01 \text { to } \leq 20.0 \\ & >20 \text { to } \leq 40.0 \end{aligned}$	$\begin{gathered} +13.0 \\ +6.0 \end{gathered}$	$\begin{gathered} +11.0 \\ +3.0 \end{gathered}$
68175B	0.5 to 50.0	Standard	Standard
68177B	0.01 to 50.0	Standard	Standard
68185B	0.5 to 60.0	Standard	Standard
68187B	0.01 to 60.0	Standard	Standard
68195B	0.5 to 65.0	Standard	Not Available
68197B	0.01 to 65.0	Standard	Not Available

LEVELED OUTPUT POWER RANGE

Without an Attenuator: Maximum leveled power to $-15 \mathrm{dBm}(-20 \mathrm{dBm}$ typical). For units with Option 15A installed, minimum settable power is $-5 \mathrm{dBm}(-10 \mathrm{dBm}$ typical).
With an Attenuator: Maximum leveled power to -115 dBm (-120 dBm typical). For 68175B, 68177B, 68185B, 67187B, and units with Option 15A installed, minimum settable power is -105 dBm (-110 dBm typical)

UNLEVELED OUTPUT POWER RANGE (typical)
Without an Attenuator: $>40 \mathrm{~dB}$ below max power. With an Attenuator: $>130 \mathrm{~dB}$ below max power.

POWER LEVEL SWITCHING TIME (to within specified accuracy):

Without Change in Step Attenuator: <1ms typical With Change in Step Attenuator: <20 ms typical

ACCURACY AND FLATNESS
Step Sweep and CW Modes

Attenuation Below Max Power	Frequency (GHz)					
	$\begin{aligned} & 0.01- \\ & 0.05 \\ & \hline \end{aligned}$	0.05-20	20-40	40-50	50-60	60-65
Accuracy: $\begin{gathered} 0-25 \mathrm{~dB}^{(2)} \\ 25-60 \mathrm{~dB} \\ >60 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & \pm 1.0 \mathrm{~dB} \\ & \pm 1.0 \mathrm{~dB} \\ & \pm 1.0 \mathrm{~dB} \end{aligned}$	$\begin{array}{\|} \pm 1.0 \mathrm{~dB} \\ \pm 1.0 \mathrm{~dB} \\ \pm 1.0 \mathrm{~dB} \end{array}$		$\pm 1.5 \mathrm{~dB}$ $\pm 3.5 \mathrm{~dB}^{(1)}$ $\pm 3.5 \mathrm{~dB}^{(1)}$	$\begin{gathered} \pm 1.5 \mathrm{~dB} \\ \mathrm{~N} / \mathrm{A} \\ \mathrm{~N} / \mathrm{A} \end{gathered}$
Flatness: $\begin{gathered} 0-25 \mathrm{~dB}^{(2)} \\ 25-60 \mathrm{~dB} \\ >60 \mathrm{~dB} \end{gathered}$	$\begin{aligned} & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \\ & \pm 2.0 \mathrm{~dB} \end{aligned}$	$\pm 0.8 \mathrm{~dB}$ $\pm 0.8 \mathrm{~dB}$ $\pm 0.8 \mathrm{~dB}$	$\pm 0.8 \mathrm{~dB}$ $\pm 0.8 \mathrm{~dB}$ $\pm 0.8 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$ $\pm 1.1 \mathrm{~dB}$ $\pm 2.1 \mathrm{~dB}$	$\pm 1.1 \mathrm{~dB}$ $\pm 3.1 \mathrm{~dB}$ $\pm 3.1 \mathrm{~dB}^{(1)}$	$\pm 1.1 \mathrm{~dB}$ N/A N/A

${ }^{(1)}$ Typical
(2) 0 to 25 dB or to minimum rated power, whichever is higher

Analog Sweep Mode (typical)

Attenuation Below	Frequency (GHz)			
Max Power	$\mathbf{0 . 0 1 - 0 . 0 5}$	$\mathbf{0 . 0 5 - 2 0}$	$\mathbf{2 0 - 4 0}$	$\mathbf{4 0 - 6 5}$
Accuracy				
$0-12 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$
$0-30 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 4.6 \mathrm{~dB}$	$\pm 5.6 \mathrm{~dB}$
$30-60 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 5.2 \mathrm{~dB}$	$\pm 6.2 \mathrm{~dB}$
$60-122 \mathrm{~dB}$	$\pm 5.0 \mathrm{~dB}$	$\pm 5.0 \mathrm{~dB}$	$\pm 6.2 \mathrm{~dB}$	$\pm 7.2 \mathrm{~dB}$
Flatness				
$0-12 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 1.0 \mathrm{~dB}$	$\pm 2.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$
$0-30 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 3.0 \mathrm{~dB}$	$\pm 4.1 \mathrm{~dB}$	$\pm 5.1 \mathrm{~dB}$
$30-60 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 3.5 \mathrm{~dB}$	$\pm 4.6 \mathrm{~dB}$	$\pm 5.6 \mathrm{~dB}$
$60-122 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 4.0 \mathrm{~dB}$	$\pm 5.2 \mathrm{~dB}$	$\pm 6.2 \mathrm{~dB}$

OTHER OUTPUT POWER SPECIFICATIONS

Output Power Resolution: 0.01 dB
Source Impedance: 50Ω nomimal
Source SWR (Internal Leveling):
Without Attenuator: <1.7 at <2 GHz typical <1.6 at 2 to 20 GHz typical
<2.0 at $>20 \mathrm{GHz}$ typical
With Attenuator: <2.0 typical
Power Level Stability with Temperature:
$0.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ typical
Level Offset: Offsets the displayed power level to establish a new reference level.
OUTPUT ON/OFF: Toggles the RF output between an Off and On state. During the Off state, the RF oscillator is turned off. The On or Off state is indicated by two LEDs located below the OUTPUT ON/OFF key on the front panel.
RF On/Off Between Frequency Steps: System menu selection of RF On or RF Off during frequency switching in CW or Step Sweep modes.
RF On/Off During Retrace: System menu selection of RF On or RF Off during retrace.
Internal Leveling: Power is leveled at the output connector in all modes.

External Leveling:

External Detector: Levels output power at a remote detector location. Accepts a positive or negative 0.5 mV to 500 mV input signal from the remote detector. EXT ALC ADJ adjusts the input signal range to an optimum value.
BNC connector, front and rear panel.
External Power Meter: Levels output power at a remote power meter location. Accepts $\mathrm{a} \pm 1 \mathrm{~V}$ full scale input signal from the remote power meter. EXT ALC ADJ adjusts the input signal range to an optimum value. BNC connector, front and rear panel.

External Leveling Bandwidth:

30 kHz typical in Detector mode.
0.7 Hz typical in Power Meter mode.

User Level Flatness Correction:
Number of points: 2 to 801 points per table
Number of tables: 5 available
Entry modes: GPIB power meter or computed data

CW POWER SWEEP

Range: Sweeps between any two power levels at a single CW frequency.
Resolution: $0.01 \mathrm{~dB} /$ step
Accuracy: Same as CW power accuracy.
Step Size: User-controlled, 0.01 dB to the full power range of the instrument.
Step Dwell Time: Variable from 1 ms to 99 seconds. If the sweep crosses a step attenuator setting, there will be a sweep dwell of approximately 20 ms to allow setting of the step attenuator.

SWEEP FREQUENCY/STEP POWER

A power level step occurs after each frequency sweep. Power level remains constant for the length of time required to complete each sweep.

MODULATION

AMPLITUDE MODULATION

All amplitude modulation specifications apply at 50% depth, 1 kHz rate, with RF level set 6 dB below maximum specified leveled output power, unless otherwise noted.
External AM Input: Log AM or Linear AM input, front or rear-panel BNC, 50Ω or 600Ω input impedance. All options selectable from modulation menu.

AM Sensitivity:

Log AM: Continuously variable from $0 \mathrm{~dB} /$ volt to $25 \mathrm{~dB} /$ volt
Linear AM: Continuously variable from 0\% per volt to 100% per volt
AM Depth (typical): 0-90\% linear; $20 \mathrm{~dB} \log$
AM Bandwidth (3 dB):
DC to 50 kHz minimum
DC to 100 kHz typical
Flatness (DC to $10 \mathbf{k H z}$ rates): $\pm 0.3 \mathrm{~dB}$
Accuracy: $\pm 5 \%$
Distortion: <5\% typical
Incidential Phase Modulation
(30% depth, 10 kHz rate): <0.2 radians
Maximum Input: $\pm 1 \mathrm{~V}$

FREQUENCY MODULATION

External FM Input: Front or rear panel BNC, 50Ω or 600Ω input impedance. All options selectable from modulation menu.
FM Sensitivity: Continuously variable from $\pm 10 \mathrm{kHz}$ per volt to $\pm 20 \mathrm{MHz}$ per volt (Locked or Unlocked Narrow FM modes) or $\pm 100 \mathrm{kHz}$ per volt to $\pm 100 \mathrm{MHz}$ per volt (Unlocked Wide FM mode), selectable from modulation menu. (For 681X5B units, maximum sensitivity is divided by 2 from 1.0 to 2.2 GHz and divided by 4 from 0.5 to 1.0 GHz .)

Maximum FM Deviation:
Locked Mode (1 kHz to 500 kHz rates):
The lesser of $\pm 10 \mathrm{MHz}$ or rate $\times 300$
Unlocked Narrow Mode (DC to 500 kHz rates):
$\pm 10 \mathrm{MHz}$
Unlocked Wide Mode (DC to 100 Hz rates):
$\pm 100 \mathrm{MHz}$
FM Bandwidth (3 dB):
Locked Mode: 1 kHz to 500 kHz
Unlocked Narrow Mode: DC to 500 kHz
Unlocked Wide Mode: DC to 100 Hz
Flatness (10 kHz to 500 kHz rates): $\pm 1 \mathrm{~dB}$
Accuracy (100 kHz rate, $\pm \mathbf{1 V}$ input): 10% (5% typical)
Maximum Input: $\pm 1 \mathrm{~V}$

SQUARE WAVE MODULATION

The RF output can be pulse modulated via an external modulating signal or an internal square wave generator.
On/Off Ratio: >50 dB
Rise/Fall Time: <1 μ s typical
Internal Square Wave Generator: Four square wave signals ($400 \mathrm{~Hz}, 1 \mathrm{kHz}, 7.8125 \mathrm{kHz}$, and 27.8 kHz), selectable from modulation menu.

Accuracy: Same as internal or external 10 MHz time base.
Square Wave Symmetry: $50 \% \pm 5 \%$ at all power levels
External Input: Front or rear-panel BNC, selectable from modulation menu.

Drive Level: TTL compatible input
Minimum Pulse Width: $>5 \mu \mathrm{~s}$.
Input Logic: Positive-true or negative-true, selectable from modulation menu.

REMOTE OPERATION

All instrument functions, settings, and operating modes (except for power on/standby) are controllable using commands sent from an external computer via the GPIB (IEEE-488 interface bus).
GPIB Address: Selectable from a system menu
IEEE-488 Interface Function Subset:
Source Handshake: SH1
Acceptor Handshake: AH1
Talker: T6
Listener: L4
Service Request: SR1
Remote/Local: RL1
Parallel Poll: PP1
Device Clear: DC1
Device Trigger: DT1
Controller Capability: C0, C1, C2, C3, C28
Tri-State Driver: E2
GPIB Status Annunciators: When the instrument is operating in Remote, the GPIB status annunciators (listed below) will appear in a window on the front panel LCD.

REMOTE: Operating on the GPIB (all instrument front panel keys except for the SYSTEM key and the RETURN TO LOCAL soft-key will be ignored).
LLO (LOCAL LOCKOUT): Disables the RETURN TO LOCAL soft-key. Instrument can be placed in local mode only via GPIB.
Emulations: The instrument responds to the published GPIB commands and responses of the ANRITSU Models 6600, 6700, and 6XX00-series signal sources. When emulating another signal source, the instrument will be limited to the capabilities, mnemonics, and parameter resolutions of the emulated instrument.

GENERAL

Stored Setups: Stores front panel settings and nine additional front-panel setups in a non-volatile RAM. A system menu allows saving and recalling of instrument setups. Whenever the instrument is turned on, control settings come on at the same functions and values existing when the instrument was turned off.
Memory Sequencing Input: Accepts a TTL low-level signal to sequence through nine stored setups. AUX I/O connector, rear panel.
Self-Test: Instrument self-test is performed when Selftest soft-key is selected. If an error is detected, an error message is displayed in a window on the LCD identifying the probable cause and remedy.
Secure Mode: Disables all frequency, power level, and modulation state displays. Stored setups saved in secure mode remain secured when recalled. Mode selectable from a system menu and via GPIB.
Parameter Entry: Instrument-controlled parameters can be entered in three ways-keypad, rotary data knob, or the \wedge and v touch pads of the cursor-control key.

The keypad is used to enter new parameter values; the rotary data knob and the cursor-control key are used to edit existing parameter values. The < and > touch pads of the cursor-control key move the cursor left and right one digit under the open parameter. The rotary data knob or the \wedge and \vee touch pads will increment or decrement the digit position over the cursor.
Controlled parameters are frequency, power level, sweep time, dwell time, and number of steps.
Keypad entries are terminated by pressing the appropriate unit key ($\mathrm{GHz} / \mathrm{Sec} / \mathrm{dBm}, \mathrm{MHz} / \mathrm{ms} / \mathrm{dB}, \mathrm{kHz} / \mu \mathrm{s} /$ STEPS, or $\mathrm{Hz} / \mathrm{ns} /$ ADRS). Edits are terminated by exiting the edit menu.
Reset: Returns all instrument parameters to predefined default states or values. Any pending GPIB I/O is aborted. Selectable from the system menu.
Master/Slave Operation: Allows two 68XXXB output signals to be swept with a user-selected frequency offset. One 68XXXB synthesizer controls the other via AUX I/O and SERIAL I/O connections. Requires a Master/Slave Interface Cable Set (Part No. ND36329).
User Level Flatness Correction: Allows user to calibrate out path loss due to external switching and cables via entered power table from a GPIB power meter or calculated data. When user level correction is activated, entered power levels are delivered at the point where calibration was performed. Supported power meters are ANRITSU ML4803A and HP 437B, 438A, and 70100A. Five user tables are available with up to 801 points/table.

PERFORMANCE
 SPECIFICATIONS

Warm Up Time (Standard Time Base):
From Standby: 30 minutes.
From Cold Start $\left(0^{\circ} \mathbf{C}\right)$: 120 hours to achieve $<2 \times 10^{-8}$ per day frequency stability.
Warm Up Time (Option 16 Time Base):
From Standby: 30 minutes
From Cold Start $\left(0^{\circ} \mathrm{C}\right)$: 120 hours to achieve $<5 \mathrm{x}$ 10^{-10} per day frequency stability.
Instruments disconnected from AC power for more than 72 hours require 30 days to return to specified aging.
Power:
90-132 Vac or 180-264 Vac, 48-440 Hz, 400 VA maximum
Standby: With ac line power connected, unit is placed in standby when front panel power switch is released from the OPERATE position.
Weight: $23 \mathrm{~kg}(50 \mathrm{lb})$ maximum
Dimensions:
$133 \mathrm{H} \times 429 \mathrm{~W} \times 597 \mathrm{D}$ mm
(5.25 H x 16.875 W x 23.5 D in)

RF Output Connector:

Type K female, $\leq 40 \mathrm{GHz}$ models
Type V female, $>40 \mathrm{GHz}$ models.

ENVIRONMENTAL

Storage Temperature Range: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Relative Humidity: 5% to 95% at $40^{\circ} \mathrm{C}$.
Altitude: 4,600 meters (15,000 ft), 17.3" Hg.
EMI: Meets the conducted and radiated emission requirements of:

```
EN55011:1991/CISPR-11:1990 Group 1 Class A
    EN50082:1992
        IEC 801-2:1992-4 kV CD, }8\mathrm{ kV AD
        IEC 1000-4-3:1995-3 V/m
        IEC 801-4:1988-0.5 kV SL, 1 kV PL
        IEC 1000-4-5:1995-0.5 kV - 1 kV LN
            0.5 kV - 1 kV NG
            0.5 kV - 1 kV GL
    MIL-STD-461C Part2 RE01, RE02, CE01, CE03,
    CS01, CS02, CS06, RS03
```


INPUTS and OUTPUTS

Input/Output Connectors		
Nomenclature	Type	Location
AM IN	BNC	Front \& Rear Panel
FM IN	BNC	Front \& Rear Panel
\square IN	BNC	Front \& Rear Panel
EXT ALC IN	BNC	Front \& Rear Panel
RF OUTPUT	K-Connector V-Connector	Standard-Front Panel Option 9-Rear Panel
10 MHz REF IN	BNC	Rear Panel
10 MHz REF OUT	BNC	Rear Panel
HORIZ OUT	BNC	Rear Panel
MARKER OUT	BNC	Rear Panel
PEN LIFT OUT	BNC	Rear Panel
RETRACE	BNC	Rear Panel
BLANK OUT	BNC	Rear Panel
SEQ SYNC OUT	BNC	Rear Panel
DWELL IN	BN	Rear Panel
V/GHz OUT	BNC	Rear Panel
AUX I/O	$25-p i n ~ D-t y p e ~$	Rear Panel
SERIAL I/O	RJ45	Rear Panel
IEEE-488 GPIB	Type 57	

AM IN : Accepts an external signal to AM modulate the RF output signal. Front or rear-panel input, 50Ω or 600Ω impedance, both selectable from front-panel modulation menu.
FM IN : Accepts an external signal to FM modulate the RF output signal. Front or rear-panel input, 50Ω or 600Ω impedance, both selectable from front-panel modulation menu.
$\square ـ \operatorname{IN}:$ Accepts an external TTL compatible signal to pulse modulate the RF output signal. Front or rear-panel input, selectable from front-panel modulation menu.
EXT ALC IN (External ALC Input): Provides for leveling the RF output signal externally with either a detector or power meter. Signal requirements are shown in the RF Output specifications on page B-4.
RF OUTPUT: Provides for RF output from 50Ω source impedance. K or V Connector, female. Option 9 moves the RF Output connector to the rear panel.
10 MHz REF IN: Accepts an external $10 \mathrm{MHz} \pm 100 \mathrm{~Hz}$, 0 to +10 dBm time-base signal. Automatically disconnects the internal high-stability time-base option, if installed. 50Ω impedance.
10 MHz REF OUT: Provides a $0.5 \mathrm{Vp}-\mathrm{p}, \mathrm{AC}$ coupled, 10 MHz signal derived from the internal frequency standard. 50Ω impedance.

HORIZ OUT (Horizontal Sweep Output): Provides OV at beginning and +10 V at end of sweep for all sweep modes, regardless of sweep width. In CW mode, the voltage is proportional to frequency between 0 V at low end and +10 V at the high end of range. In CW mode, if CW RAMP is enabled, a repetitive, 0 V to +10 V ramp is provided.
MARKER OUT: Provides $\mathrm{a}+5 \mathrm{~V}$ or -5 V signal at each frequency marker in a sweep. Signal polarity selectable from system menu.
PEN LIFT OUT: Provides normally-open or normallyclosed relay contacts, selectable from system menu, during bandswitch points and retrace.
RETRACE BLANK OUT: Provides a +5 V or -5 V signal coincident with sweep retrace. Signal polarity selectable from system menu.
SEQ SYNC OUT (Sequential Sync Output): Provides a +5 V signal during retrace, at bandswitching points, and during each frequency step in step sweep mode, -5 V during markers, and -10 V during the selected marker.
DWELL IN: Accepts an external TTL low-level signal to pause the sweep in both analog and step sweep modes. The sweep resumes when the signal is removed.
V/GHz OUT: Provides a reference voltage relative to the RF output frequency (refer to the table below).

Model Number	V/GHz Output
68137B, 68145B, 68147B	$1.0 \mathrm{~V} / \mathrm{GHz}$
68153B, 68155B, 68159B	$0.5 \mathrm{~V} / \mathrm{GHz}$
68163B, 68165B, 68169B	$0.5 \mathrm{~V} / \mathrm{GHz}$
$68175 \mathrm{~B}, 68177 \mathrm{~B}$	$0.25 \mathrm{~V} / \mathrm{GHz}$
$68185 \mathrm{~B}, 68187 \mathrm{~B}$	$0.25 \mathrm{~V} / \mathrm{GHz}$
$68195 \mathrm{~B}, 68197 \mathrm{~B}$	$0.25 \mathrm{~V} / \mathrm{GHz}$

AUX I/O (Auxiliary Input/Output): Provides for most of the rear panel BNC connections through a single, 25 -pin, D-type connector. Supports master-slave operation with another 68XXXB synthesizer and allows for a single-cable interface with the Model 562 Scalar Network Analyzer and other ANRITSU instruments. For a pinout diagram and descriptions, see Appendix A, Figure A-2.
SERIAL I/O (Serial Input/Output): Provides access to RS-232 terminal ports to support service and calibration functions, and master-slave operations.
IEEE-488 GPIB: Provides input/output connections for the General Purpose Interface Bus (GPIB). For a pinout diagram, see Appendix A, Figure A-3.

OPTIONS

Option 1, Rack Mounting: Rack mount kit containing a set of track slides (90° tilt capability), mounting ears, and front panel handles to let the instrument be mounted in a standard 19 -inch equipment rack.
Option 2A, 110 dB Step Attenuator: Adds a $10 \mathrm{~dB} /$ step attenuator with 110 dB range for models having a high-end frequency of $\leq 26.5 \mathrm{GHz}$. Rated RF output power is reduced. Option 2B, 110 dB Step Attenuator: Adds a $10 \mathrm{~dB} /$ step attenuator with 110 dB range for models having a high-end frequency of $\leq 40 \mathrm{GHz}$. Rated RF output power is reduced. Option 2C, 90 dB Step Attenuator: Adds a $10 \mathrm{~dB} /$ step attenuator with 90 dB range for models having a high-end frequency of $\leq 50 \mathrm{GHz}$. Rated RF output power is reduced. Option 2D, 90 dB Step Attenuator: Adds a $10 \mathrm{~dB} /$ step attenuator with 90 dB range for models having a high-end frequency of $\leq 60 \mathrm{GHz}$. Rated RF output power is reduced. Option 9, Rear Panel RF Output: Moves the RF output connector to the rear panel.
Option 11, 0.1 Hz Frequency Resolution: Provides frequency resolution of 0.1 Hz .
Option 14, ANRITSU 360B VNA Compatibility: Modifies rack mounting hardware to mate unit in a ANRITSU 360B VNA console.
Option 15A, High Power Output: Adds high-power RF components to the instrument in the $2-26.5 \mathrm{GHz}$ frequency range. Option 15A is standard in models having a high-end frequency that is $>40 \mathrm{GHz}$.
Option 16, High-Stability Time Base: Adds an ovenized, 10 MHz crystal oscillator as a high-stability time base.
Option 17A, Delete Front Panel: Deletes the front panel for use in remote control applications where a front panel display and keyboard control are not needed.
Option 18, mmWave Module Bias Output: Provides bias output for 54000-xWRxx Millimeter Wave Source Modules. BNC Twinax connectors, rear panel.
Option 19, SCPI Programmability: Adds GPIB command mnemonics complying with Standard Commands for Programmable Instruments (SCPI), Version 1993.0 SCPI programming complies with IEEE 488.2-1987.

Subject Index

$$
0-9
$$

681XXB
Front Panel Layout, 3-6
General Description, 1-3
Manuals, Related, 1-6
Models, List of, 1-4-1-5
Options, List of, 1-7
Performance Specifications, B-1
Rear Panel Layout, A-2
A
ALC, 3-50
Alternate Sweep Frequency Mode
Activating the Alternate Sweep, 3-36
Selecting a Power Level, 3-38
Selecting a Sweep Range, 3-37
Selecting Alternate Sweep, 3-36
AM Mode
Menu Map, 4-14
Operating Modes, 3-63
Providing AM, 3-63
Analog Sweep Frequency Mode
Menu Map, 4-7
Selecting a Power Level, 3-33
Selecting a Sweep Range, 3-31
Selecting Alternate Sweep, 3-36
Selecting Anal og Sweep M ode, 3-25
Setting a Sweep Trigger, 3-27
Setting the Sweep Time, 3-26
Using F requency Markers, 3-34

C

Connectors
Front Panel, 3-7
Rear Panel, A-1
CW Frequency Accuracy Test
Test Procedure, 5-6
Test Records, 5-7-5-12
Test Setup, 5-5

CW Frequency Mode
Menu Map, 4-6
Selecting a CW Frequency, 3-21
Selecting a Power Level, 3-23
Selecting CW Mode, 3-21
CW Power Sweep Mode
Menu Map, 4-11
Selecting a Sweep Range, 3-46
Selecting a Sweep Trigger, 3-45
Selecting CW Power Sweep M ode, 3-43
Setting Dwell Time, 3-44
Setting Step Size, 3-44
CW Ramp, 3-24

D

Data Display
Description, 3-8
Menu Display Format, 3-9
Menu Keys, 3-10
Data Entry Area
Description, 3-12
Default Parameters, 3-16-3-17

E

Entering Data
Editing the Current Value, 3-19
Entering a New Value, 3-20
Opening the Parameter, 3-18
Setting Increment Sizes, 3-78
Error Messages
Operation Related, 6-8
Self Test, 6-3-6-7

F

Fixed Power Level Mode
Menu Map, 4-10
Selecting a Power Level, 3-39
Selecting Fixed Power Level Mode, 3-39
FM Mode
Menu Map, 4-15
Operating Modes, 3-64
Providing FM, 3-65

Frequency Control

Frequency List, 3-22
Selecting a Preset Frequency, 3-22
Selecting a Preset Sweep Range, 3-32
Setting a Preset Sweep Range, 3-33
Frequency Markers
Intensity Markers, 3-34
Marker List, 3-34
Video Markers, 3-34
Frequency Modes
Analog Sweep Frequency Mode, 3-25
CW Frequency Mode, 3-21
Manual Sweep Frequency M ode, 3-25
Step Sweep Frequency Mode, 3-25
Frequency Scaling, 3-71
Front Panel
Connectors, 3-7
Data Display Area, 3-6, 3-8
Data Entry Area, 3-7, 3-12
Description, 3-6
Layout, 3-6

G

General Description, 1-3
General Purpose Interface Bus (GPIB)
Address, 2-7
Cable Length Restrictions, 2-7
Interface Connector, 2-7
Line Terminator, 2-9
Native Interface Language, 2-9
SCPI Interface Language, 2-9
Setup and Interconnection, 2-7

I

Identification Number, 1-6
Initial Inspection, 2-3

L

Level Offset, 3-42
Leveling Operations
ALC Power Slope, 3-55
Attenuator Decoupling, 3-54
External Leveling, 3-51
Fixed Gain, 3-53
Internal Leveling, 3-51
Menu Map, 4-13
Selecting a Leveling Mode, 3-50
User Cal (User Level Flatness Correction), 3-57

M

Maintenance, Routine
Display Cleaning, 6-13
Fan Filter Cleaning, 6-13
Line F use Replacement, 6-14
Manual Sweep Frequency Mode
Menu Map, 4-9
Selecting a Power Level, 3-33
Selecting a Sweep Range, 3-31
Selecting Manual Sweep Mode, 3-30
Using Frequency Markers, 3-34
Manual, GPIB Programming, 1-6
Manual, Maintenance, 1-7
Manual, SCPI Programming, 1-6
Markers, Frequency, 3-34
Master-Slave Operation, 7-4
Menu Maps
AM Mode, 4-14
Analog Sweep Frequency Mode, 4-7
CW Frequency Mode, 4-6
CW Power Sweep M ode, 4-11
Description, 4-3
Fixed Power Level Mode, 4-10
FM Mode, 4-15
Leveling Modes, 4-13
Manual Sweep Frequency Mode, 4-9
Sample Menu Map, 4-5
Square Wave M odulation Mode, 4-16
Step Sweep Frequency M ode, 4-8
Sweep Frequency/Step Power M ode, 4-12
System Configuration, 4-17
Messages
Error, 6-3-6-8
Status, 6-9
Warning, 6-9
Models, List of, 1-4-1-5
Modulation Modes
AM Mode, 3-63
FM Mode, 3-63
Square Wave Modulation Mode, 3-63

O

Operating Environment, 2-6
Operational Verification Tests, 5-3
Operator Maintenance
Error and Warning/Status Messages, 6-3
Routine Maintenance, 6-13
Troubleshooting, 6-10
Options, List of, 1-7

P

Performance Specifications, 1-8, B-1
Power Level Accuracy and Flatness Tests
Accuracy Test Procedure, 5-14
Flatness Test Procedure, 5-15
Test Records, 5-19-5-64
Test Setup, 5-13
Power Level Control
Level List, 3-40
Selecting a Preset Power Level, 3-40
Selecting a Preset Sweep Range, 3-47
Setting a Preset Sweep Range, 3-47
Power Level Modes
CW Power Sweep Mode, 3-43
Fixed Power Level Mode, 3-39
Sweep Frequency/Step Power Mode, 3-43
Power Level Offset, 3-42
Power Requirements, 2-4
Preparation for Storage/Shipment, 2-13
Preparation for Use, 2-4
Line Voltage Selection, 2-4
Operating Environment, 2-6
Power Requirements, 2-4
Standby Operation, 2-5
Warmup Time, 2-6

R

Rear Panel Connectors, A-1
Recommended Test Equipment, 1-8

S

Saving/Recalling Instrument Setups, 3-79
Scope of Manual, 1-3
Secure Operation, 3-81
Self Test
Error Messages, 6-3-6-7
From System Menu, 3-15
Service Centers, 2-14
Specifications, Performance, B-1
Square Wave M odulation Mode
Menu Map, 4-16
Operating Modes, 3-67
Providing Square Wave M odulation, 3-67
SS M ode Operation, 7-13
Start Up, 3-14
Start-Up Display, 3-14

Step Sweep F requency M ode
Menu Map, 4-8
Selecting a Power Level, 3-33
Selecting a Sweep Range, 3-31
Selecting Alternate Sweep, 3-36
Selecting Step Sweep M ode, 3-28
Setting a Sweep Trigger, 3-27
Setting Dwell Time, 3-29
Setting Step Size, 3-29
Using Frequency Markers, 3-34
Sweep Frequency M odes
Analog Sweep Frequency Mode, 3-25
Manual Sweep Frequency M ode, 3-25
Step Sweep Frequency Mode, 3-25
Sweep Frequency/Step Power Mode
Menu Map, 4-12
Selecting a Sweep Frequency/Step Power Mode, 3-48
Selecting a Sweep Range, 3-46
Setting Step Size, 3-49
System Configuration
Configuring the Front Panel, 3-71
Configuring the GPIB, 3-75
Configuring the Rear Panel, 3-72
Configuring the RF, 3-73
Frequency Scaling, 3-71
Menu Map, 4-17
Setting Increment Sizes, 3-78

T

Test Equipment, 1-8, 5-3
Testing, Operational Verification
CW Frequency Accuracy, 5-5
Initial 681XXB Checkout, 5-4
Power Level Accuracy and Flatness, 5-13
Test Equipment, 5-3
Test Records, 5-3, 5-7-5-12, 5-19-5-64
Troubleshooting Tables, 6-10-6-12

U

Use With Other Instruments
Master-Slave Operation with a 68XXXB, 7-4
Use with a 360B Vector Network Analyzer, 7-12
Use with a 562 Scalar Network Analyzer, 7-10
Use With a HP8757D Scalar Network
Analyzer, 7-17

[^0]: * Specification for all frequencies listed above is $\pm 100 \mathrm{~Hz}$. All frequencies are in GHz .

[^1]: * Specification for all frequencies listed above is $\pm 10 \mathrm{~Hz}$. All frequencies are in GHz .

[^2]: * Specification for all frequencies listed above is $\pm 100 \mathrm{~Hz}$. All frequencies are in GHz .

[^3]: *** Maximum variation is 2.0 dB (typical, not a specification).

[^4]: *** Maximum variation is $7.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 6.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 8.2 \mathrm{~dB}(20$ to 26.5 GHz$)$ (typical, not a specification).

[^5]: *** Maximum variation is $7.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 6.0 \mathrm{~dB}(0.01$ to 20 GHz$) ; 8.2 \mathrm{~dB}(20$ to 40 GHz$)$ (typical, not a specification).

[^6]: ${ }^{* * *}$ Maximum variation is $2.0 \mathrm{~dB}(0.5$ to 20 GHz$) ; 4.0 \mathrm{~dB}(20$ to 40 GHz$) ; 5.0 \mathrm{~dB}(40$ to 50 GHz$)$ (typical, not a specification).

[^7]: ${ }^{* * *}$ Maximum variation is $6.0 \mathrm{~dB}(0.5$ to 20 GHz$) ; 8.2 \mathrm{~dB}(20$ to 40 GHz$) ; 10.2 \mathrm{~dB}(40$ to 60 GHz$)($ typical, not a specification).

[^8]: ${ }^{* * *}$ Maximum variation is $7.0 \mathrm{~dB}(0.01$ to 0.05 GHz$) ; 6.0 \mathrm{~dB}(0.05$ to 20 GHz$) ; 8.2 \mathrm{~dB}(20$ to 40 GHz$) ; 10.2 \mathrm{~dB}(40$ to 60 GHz)(typical, not a specification).

